Skip to main content

Therapy Response Imaging in Breast Cancer

  • Chapter
  • First Online:
Therapy Response Imaging in Oncology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 712 Accesses

Abstract

In the management of breast cancer, imaging as a tool to evaluate therapy response by imaging is becoming more important. Chemotherapy and hormonal therapy are used in combination with surgical and radiation therapy for the primary breast cancer. For metastatic breast cancer, response assessment by imaging plays a vital role in optimized personalized management. Mammography (MMG), ultrasonography (US), magnetic resonance imaging (MRI), computed tomography (CT), bone scintigram, and FDG-PET are the major tools widely used in the clinics. Essential knowledge of breast cancer treatment including subtypes, treatment options, and response-guided approach are covered. Increasing data on neoadjuvant chemotherapy, in particular the estimation and prediction of pathological complete response (pCR) by imaging, is discussed. Magnetic resonance imaging (MRI) and FDG-PET are the two main modalities which can provide quantitative imaging data. Limited evidence on metastatic breast cancer and challenges in evaluation response specific to the metastatic location is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adike A, Karlin N, Menias C, Carey EJ (2016) Pseudocirrhosis: a case series and literature review. Case Rep Gastroenterol 10(2):381–391

    Article  PubMed  PubMed Central  Google Scholar 

  • Adrada BE, Huo L, Lane DL, Arribas EM, Resetkova E, Yang W (2015) Histopathologic correlation of residual mammographic microcalcifications after neoadjuvant chemotherapy for locally advanced breast cancer. Ann Surg Oncol 22(4):1111–1117

    Article  PubMed  Google Scholar 

  • Atkins JJ, Appleton CM, Fisher CS, Gao F, Margenthaler JA (2013) Which imaging modality is superior for prediction of response to neoadjuvant chemotherapy in patients with triple negative breast cancer? J Oncol 2013:964863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bae MS, Shin SU, Ryu HS, Han W, Im SA, Park IA et al (2016) Pretreatment MR imaging features of triple-negative breast cancer: association with response to neoadjuvant chemotherapy and recurrence-free survival. Radiology 281(2):392–400

    Article  PubMed  Google Scholar 

  • Bassa P, Kim EE, Inoue T, Wong FC, Korkmaz M, Yang DJ et al (1996) Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 37(6):931–938

    CAS  PubMed  Google Scholar 

  • Bolan PJ, Kim E, Herman BA, Newstead GM, Rosen MA, Schnall MD et al (2017) MR spectroscopy of breast cancer for assessing early treatment response: results from the ACRIN 6657 MRS trial. J Magn Reson Imaging 46(1):290–302

    Article  PubMed  Google Scholar 

  • Brown AL, Middleton G, MacVicar AD, Husband JE (1998) T1-weighted magnetic resonance imaging in breast cancer vertebral metastases: changes on treatment and correlation with response to therapy. Clin Radiol 53(7):493–501

    Article  CAS  PubMed  Google Scholar 

  • Burcombe RJ, Makris A, Pittam M, Lowe J, Emmott J, Wong WL (2002) Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using [18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer 38(3):375–379

    Article  CAS  PubMed  Google Scholar 

  • Cain EH, Saha A, Harowicz MR, Marks JR, Marcom PK, Mazurowski MA (2019) Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set. Breast Cancer Res Treat 173(2):455–463

    Article  CAS  PubMed  Google Scholar 

  • Chamming’s F, Ueno Y, Ferre R, Kao E, Jannot AS, Chong J et al (2018) Features from computerized texture analysis of breast cancers at pretreatment MR imaging are associated with response to neoadjuvant chemotherapy. Radiology 286(2):412–420

    Article  PubMed  Google Scholar 

  • Cho N, Im SA, Park IA, Lee KH, Li M, Han W et al (2014) Breast cancer: early prediction of response to neoadjuvant chemotherapy using parametric response maps for MR imaging. Radiology 272(2):385–396

    Article  PubMed  Google Scholar 

  • Curigliano G, Burstein HJ, PW E, Gnant M, Dubsky P, Loibl S et al (2017) De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol 28(8):1700–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depardon E, Kanoun S, Humbert O, Bertaut A, Riedinger JM, Tal I et al (2018) FDG PET/CT for prognostic stratification of patients with metastatic breast cancer treated with first line systemic therapy: comparison of EORTC criteria and PERCIST. PLoS One 13(7):e0199529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dose-Schwarz J, Tiling R, Avril-Sassen S, Mahner S, Lebeau A, Weber C et al (2010) Assessment of residual tumour by FDG-PET: conventional imaging and clinical examination following primary chemotherapy of large and locally advanced breast cancer. Br J Cancer 102(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  • Fangberget A, Nilsen LB, Hole KH, Holmen MM, Engebraaten O, Naume B et al (2011) Neoadjuvant chemotherapy in breast cancer-response evaluation and prediction of response to treatment using dynamic contrast-enhanced and diffusion-weighted MR imaging. Eur Radiol 21(6):1188–1199

    Article  CAS  PubMed  Google Scholar 

  • Fornvik D, Zackrisson S, Ljungberg O, Svahn T, Timberg P, Tingberg A et al (2010) Breast tomosynthesis: accuracy of tumor measurement compared with digital mammography and ultrasonography. Acta Radiol 51(3):240–247

    Article  PubMed  Google Scholar 

  • Galban CJ, Ma B, Malyarenko D, Pickles MD, Heist K, Henry NL et al (2015) Multi-site clinical evaluation of DW-MRI as a treatment response metric for breast cancer patients undergoing neoadjuvant chemotherapy. PLoS One 10(3):e0122151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ et al (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groheux D, Espie M, Giacchetti S, Hindie E (2013) Performance of FDG PET/CT in the clinical management of breast cancer. Radiology 266(2):388–405

    Article  PubMed  Google Scholar 

  • Hayashi N, Tsunoda H, Namura M, Ochi T, Suzuki K, Yamauchi H et al (2019) Magnetic resonance imaging combined with second-look ultrasonography in predicting pathologic complete response after neoadjuvant chemotherapy in primary breast cancer patients. Clin Breast Cancer 19(1):71–77

    Article  PubMed  Google Scholar 

  • Henderson S, Purdie C, Michie C, Evans A, Lerski R, Johnston M et al (2017) Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer. Eur Radiol 27(11):4602–4611

    Article  PubMed  PubMed Central  Google Scholar 

  • Houssami N, Macaskill P, von Minckwitz G, Marinovich ML, Mamounas E (2012) Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer 48(18):3342–3354

    Article  CAS  PubMed  Google Scholar 

  • Huber S, Wagner M, Zuna I, Medl M, Czembirek H, Delorme S (2000) Locally advanced breast carcinoma: evaluation of mammography in the prediction of residual disease after induction chemotherapy. Anticancer Res 20(1B):553–558

    CAS  PubMed  Google Scholar 

  • Hylton NM, Blume JD, Bernreuter WK, Pisano ED, Rosen MA, Morris EA et al (2012) Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy—results from ACRIN 6657/I-SPY TRIAL. Radiology 263(3):663–672

    Article  PubMed  PubMed Central  Google Scholar 

  • Hylton NM, Gatsonis CA, Rosen MA, Lehman CD, Newitt DC, Partridge SC et al (2016) Neoadjuvant chemotherapy for breast cancer: functional tumor volume by MR imaging predicts recurrence-free survival-results from the ACRIN 6657/CALGB 150007 I-SPY 1 TRIAL. Radiology 279(1):44–55

    Article  PubMed  Google Scholar 

  • Iacconi C, Giannelli M, Marini C, Cilotti A, Moretti M, Viacava P et al (2010) The role of mean diffusivity (MD) as a predictive index of the response to chemotherapy in locally advanced breast cancer: a preliminary study. Eur Radiol 20(2):303–308

    Article  PubMed  Google Scholar 

  • Iima M, Nakamoto Y, Kanao S, Sugie T, Ueno T, Kawada M et al (2012) Clinical performance of 2 dedicated PET scanners for breast imaging: initial evaluation. J Nucl Med 53(10):1534–1542

    Article  PubMed  Google Scholar 

  • Jung JI, Kim HH, Park SH, Song SW, Chung MH, Kim HS et al (2004) Thoracic manifestations of breast cancer and its therapy. Radiographics 24(5):1269–1285

    Article  PubMed  Google Scholar 

  • Kanao S, Kataoka M (2016) Imaging tumor response by preoperative systemic treatment. In: Toi M, Winer E, Benson J, Klimberg S (eds) Personalized treatment of breast cancer. Springer, Tokyo

    Google Scholar 

  • Kashyap R, Reddy R, Voona MK (2018) Pseudocirrhosis of the liver in setting of metastatic carcinoma breast: an ominous sign to be remembered. Indian J Nucl Med 33(1):86–87

    PubMed  PubMed Central  Google Scholar 

  • Keune JD, Jeffe DB, Schootman M, Hoffman A, Gillanders WE, Aft RL (2010) Accuracy of ultrasonography and mammography in predicting pathologic response after neoadjuvant chemotherapy for breast cancer. Am J Surg 199(4):477–484

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Kim SK, Lee ES, Ro J, Kang S (2004) Predictive value of [18F]FDG PET for pathological response of breast cancer to neo-adjuvant chemotherapy. Ann Oncol 15(9):1352–1357

    Article  PubMed  Google Scholar 

  • Kim SY, Cho N, Park IA, Kwon BR, Shin SU, Kim SY et al (2018) Dynamic contrast-enhanced breast MRI for evaluating residual tumor size after neoadjuvant chemotherapy. Radiology 289(2):327–334

    Article  PubMed  Google Scholar 

  • Lecouvet FE, Talbot JN, Messiou C, Bourguet P, Liu Y, de Souza NM et al (2014) Monitoring the response of bone metastases to treatment with magnetic resonance imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer 50(15):2519–2531

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Rosen EL, Mankoff DA (2009) The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: part 2—response to therapy, other indications, and future directions. J Nucl Med 50(5):738–748

    Article  PubMed  Google Scholar 

  • Li XR, Cheng LQ, Liu M, Zhang YJ, Wang JD, Zhang AL et al (2012) DW-MRI ADC values can predict treatment response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. Med Oncol 29(2):425–431

    Article  CAS  PubMed  Google Scholar 

  • Li JJ, Chen C, Gu Y, Di G, Wu J, Liu G et al (2014) The role of mammographic calcification in the neoadjuvant therapy of breast cancer imaging evaluation. PLoS One 9(2):e88853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S, Ren R, Chen Z, Wang Y, Fan T, Li C et al (2015) Diffusion-weighted imaging in assessing pathological response of tumor in breast cancer subtype to neoadjuvant chemotherapy. J Magn Reson Imaging 42(3):779–787

    Article  PubMed  Google Scholar 

  • Lobbes MB, Prevos R, Smidt M, Tjan-Heijnen VC, van Goethem M, Schipper R et al (2013) The role of magnetic resonance imaging in assessing residual disease and pathologic complete response in breast cancer patients receiving neoadjuvant chemotherapy: a systematic review. Insights Imaging 4(2):163–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Zhang S, Li J, Li J, Kang Y, Ren W (2017) Comparison of strain and shear-wave ultrasonic elastography in predicting the pathological response to neoadjuvant chemotherapy in breast cancers. Eur Radiol 27(6):2282–2291

    Article  PubMed  Google Scholar 

  • Mann RM, Kuhl CK, Kinkel K, Boetes C (2008) Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol 18(7):1307–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinovich ML, Macaskill P, Irwig L, Sardanelli F, von Minckwitz G, Mamounas E et al (2013) Meta-analysis of agreement between MRI and pathologic breast tumour size after neoadjuvant chemotherapy. Br J Cancer 109(6):1528–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinovich ML, Houssami N, Macaskill P, von Minckwitz G, Blohmer JU, Irwig L (2015) Accuracy of ultrasound for predicting pathologic response during neoadjuvant therapy for breast cancer. Int J Cancer 136(11):2730–2737

    Article  CAS  PubMed  Google Scholar 

  • Martincich L, Montemurro F, De Rosa G, Marra V, Ponzone R, Cirillo S et al (2004) Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res Treat 83(1):67–76

    Article  PubMed  Google Scholar 

  • Masumoto N, Kadoya T, Sasada S, Emi A, Arihiro K, Okada M (2018) Intratumoral heterogeneity on dedicated breast positron emission tomography predicts malignancy grade of breast cancer. Breast Cancer Res Treat 171(2):315–323

    Article  PubMed  Google Scholar 

  • Miyake KK, Nakamoto Y, Kanao S, Tanaka S, Sugie T, Mikami Y et al (2014) Journal club: diagnostic value of (18)F-FDG PET/CT and MRI in predicting the clinicopathologic subtypes of invasive breast cancer. AJR Am J Roentgenol 203(2):272–279

    Article  PubMed  Google Scholar 

  • Mukhtar RA, Yau C, Rosen M, Tandon VJ, I-Spy T, Investigators A et al (2013) Clinically meaningful tumor reduction rates vary by prechemotherapy MRI phenotype and tumor subtype in the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Ann Surg Oncol 20(12):3823–3830

    Article  PubMed  PubMed Central  Google Scholar 

  • Nascimento AB, Mitchell DG, Rubin R, Weaver E (2001) Diffuse desmoplastic breast carcinoma metastases to the liver simulating cirrhosis at MR imaging: report of two cases. Radiology 221(1):117–121

    Article  CAS  PubMed  Google Scholar 

  • Nishino M, Hayakawa K, Nakamura Y, Morimoto T, Mukaihara S (2003) Effects of tamoxifen on hepatic fat content and the development of hepatic steatosis in patients with breast cancer: high frequency of involvement and rapid reversal after completion of tamoxifen therapy. AJR Am J Roentgenol 180(1):129–134

    Article  PubMed  Google Scholar 

  • Park SH, Moon WK, Cho N, Song IC, Chang JM, Park IA et al (2010) Diffusion-weighted MR imaging: pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Radiology 257(1):56–63

    Article  PubMed  Google Scholar 

  • Park J, Chae EY, Cha JH, Shin HJ, Choi WJ, Choi YW et al (2018) Comparison of mammography, digital breast tomosynthesis, automated breast ultrasound, magnetic resonance imaging in evaluation of residual tumor after neoadjuvant chemotherapy. Eur J Radiol 108:261–268

    Article  PubMed  Google Scholar 

  • Partridge SC, Gibbs JE, Lu Y, Esserman LJ, Tripathy D, Wolverton DS et al (2005) MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. AJR Am J Roentgenol 184(6):1774–1781

    Article  PubMed  Google Scholar 

  • Partridge SC, Zhang Z, Newitt DC, Gibbs JE, Chenevert TL, Rosen MA et al (2018) Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial. Radiology 289(3):618–627

    Article  PubMed  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  • Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A et al (2008) Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 26(5):778–785

    Article  PubMed  Google Scholar 

  • Rosen EL, Eubank WB, Mankoff DA (2007) FDG PET, PET/CT, and breast cancer imaging. Radiographics 27(Suppl 1):S215–S229

    Article  PubMed  Google Scholar 

  • Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L et al (2006) Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol 24(34):5366–5372

    Article  PubMed  Google Scholar 

  • Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D et al (2000) Positron emission tomography using [(18)F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18(8):1689–1695

    Article  CAS  PubMed  Google Scholar 

  • Schrading S, Kuhl CK (2015) Breast cancer: influence of taxanes on response assessment with dynamic contrast-enhanced MR imaging. Radiology 277(3):687–696

    Article  PubMed  Google Scholar 

  • Sharma U, Danishad KK, Seenu V, Jagannathan NR (2009) Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed 22(1):104–113

    Article  PubMed  Google Scholar 

  • Shin SU, Cho N, Lee HB, Kim SY, Yi A, Kim SY et al (2018) Neoadjuvant chemotherapy and surgery for breast cancer: preoperative MRI features associated with local recurrence. Radiology 289(1):30–38

    Article  PubMed  Google Scholar 

  • Takeda K, Kanao S, Okada T, Ueno T, Toi M, Ishiguro H et al (2012a) MRI evaluation of residual tumor size after neoadjuvant endocrine therapy vs. neoadjuvant chemotherapy. Eur J Radiol 81(9):2148–2153

    Article  PubMed  Google Scholar 

  • Takeda K, Kanao S, Okada T, Kataoka M, Ueno T, Toi M et al (2012b) Assessment of CAD-generated tumor volumes measured using MRI in breast cancers before and after neoadjuvant chemotherapy. Eur J Radiol 81(10):2627–2631

    Article  PubMed  Google Scholar 

  • Tiling R, Linke R, Untch M, Richter A, Fieber S, Brinkbaumer K et al (2001) 18F-FDG PET and 99mTc-sestamibi scintimammography for monitoring breast cancer response to neoadjuvant chemotherapy: a comparative study. Eur J Nucl Med 28(6):711–720

    Article  CAS  PubMed  Google Scholar 

  • Tozaki M, Kobayashi T, Uno S, Aiba K, Takeyama H, Shioya H et al (2006) Breast-conserving surgery after chemotherapy: value of MDCT for determining tumor distribution and shrinkage pattern. AJR Am J Roentgenol 186(2):431–439

    Article  PubMed  Google Scholar 

  • von Minckwitz G, Blohmer JU, Costa SD, Denkert C, Eidtmann H, Eiermann W et al (2013) Response-guided neoadjuvant chemotherapy for breast cancer. J Clin Oncol 31(29):3623–3630

    Article  CAS  Google Scholar 

  • Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R (1993) Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 11(11):2101–2111

    Article  CAS  PubMed  Google Scholar 

  • Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Cao G, Sun X, Lee J, Rubin DL, Napel S et al (2018) Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy. Radiology 288(1):26–35

    Article  PubMed  Google Scholar 

  • Yeh E, Slanetz P, Kopans DB, Rafferty E, Georgian-Smith D, Moy L et al (2005) Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. AJR Am J Roentgenol 184(3):868–877

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masako Kataoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kataoka, M. (2020). Therapy Response Imaging in Breast Cancer. In: Nishino, M. (eds) Therapy Response Imaging in Oncology. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-030-31171-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31171-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31170-4

  • Online ISBN: 978-3-030-31171-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics