Skip to main content

Nanomaterials for Wound Healing

  • Chapter
  • First Online:
Nanomaterials for Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Tissue wounds cause a significant social and economic burden, which results in diminished quality of life and increased patient mortality. In the USA alone, the estimated cost of wound care ranges from $28.1 to $96.8 billion. The rapid rise of an aging population with chronic debilitating diseases, including obesity and diabetes, contributes to the unmet critical need for better therapeutics for impaired wound healing in patients. Conventional wound management fails to provide rapid tissue repair and restoration of function, particularly in these diseased states. Wound healing is a tightly orchestrated, complex, and dynamic physiological process occurring in a tightly controlled manner that requires more advanced alternative therapeutic approaches. An understanding of the basic biological mechanisms in wound repair underpins the development of novel therapeutic approaches for restoration of tissue function. The use of nanomaterials in wound management represents a unique tool that can be specifically designed to closely reflect the underlying physiological processes in damaged tissues. Harnessing this technology results in a cost-effective and individualized approach to wound management, which has the potential to revolutionize wound management. This chapter presents a basic overview of the pathophysiology of wound healing and an approach to utilizing nanomaterials for wound healing therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aderibigbe, B. A., & Buyana, B. (2018). Alginate in wound dressings. Pharmaceutics, 10, E42.

    Article  PubMed  CAS  Google Scholar 

  • Adhya, A., Bain, J., Ray, O., Hazra, A., Adhikari, S., Dutta, G., … Majumdar, B. K. (2014). Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. Journal of Basic and Clinical Pharmacy, 6, 29–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmed, S., & Ikram, S. (2016). Chitosan based scaffolds and their applications in wound healing. Achievements in the Life Sciences, 10, 27–37.

    Article  Google Scholar 

  • Ahmed, T. A. E., Dare, E. V., & Hincke, M. (2008). Fibrin: A versatile scaffold for tissue engineering applications. Tissue Engineering. Part B, Reviews, 14, 199–215.

    Article  CAS  PubMed  Google Scholar 

  • Akturk, O., Kismet, K., Yasti, A. C., Kuru, S., Duymus, M. E., Kaya, F., … Keskin, D. (2016). Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. Journal of Biomaterials Applications, 31, 283–301.

    Article  CAS  PubMed  Google Scholar 

  • Alaish, S. M., Yager, D., Diegelmann, R. F., & Cohen, I. K. (1994). Biology of fetal wound healing: Hyaluronate receptor expression in fetal fibroblasts. Journal of Pediatric Surgery, 29, 1040–1043.

    Article  CAS  PubMed  Google Scholar 

  • Alcantar, N. A., Aydil, E. S., & Israelachvili, J. N. (2000). Polyethylene glycol-coated biocompatible surfaces. Journal of Biomedical Materials Research, 51, 343–351.

    Article  CAS  PubMed  Google Scholar 

  • Almine, J. F., Bax, D. V., Mithieux, S. M., Nivison-Smith, L., Rnjak, J., Waterhouse, A., … Weiss, A. S. (2010). Elastin-based materials. Chem Soc Rev, 39(9), 3371–3379. https://doi.org/10.1039/b919452p.

    Article  CAS  PubMed  Google Scholar 

  • Alphonsa, B. M., Sudheesh Kumar, P. T., Praveen, G., Biswas, R., Chennazhi, K. P., & Jayakumar, R. (2014). Antimicrobial drugs encapsulated in fibrin nanoparticles for treating microbial infested wounds. Pharmaceutical Research, 31, 1338–1351.

    Article  CAS  PubMed  Google Scholar 

  • Andrews, K. D., & Hunt, J. A. (2008). Upregulation of matrix and adhesion molecules induced by controlled topography. Journal of Materials Science. Materials in Medicine, 19, 1601–1608.

    Article  CAS  PubMed  Google Scholar 

  • Aramwit, P. (2016). Introduction to biomaterials for wound healing. In Wound healing biomaterials (pp. 3–38). Amsterdam: Elsevier.

    Google Scholar 

  • Armstrong, J. R., & Ferguson, M. W. (1995). Ontogeny of the skin and the transition from scar-free to scarring phenotype during wound healing in the pouch young of a marsupial, Monodelphis domestica. Developmental Biology, 169, 242–260.

    Article  CAS  PubMed  Google Scholar 

  • Ashtikar, M., & Wacker, M. G. (2018). Nanopharmaceuticals for wound healing—Lost in translation? Advanced Drug Delivery Reviews, 129, 194–218.

    Article  CAS  PubMed  Google Scholar 

  • Atala, A., Irvine, D. J., Moses, M., & Shaunak, S. (2010). Wound healing versus regeneration: Role of the tissue environment in regenerative medicine. MRS Bulletin/Materials Research Society, 35.

    Google Scholar 

  • Bakhshayesh, A. R. D., Annabi, N., Khalilov, R., Akbarzadeh, A., Samiei, M., Alizadeh, E., … Montaseri, A. (2018). Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artificial Cells, Nanomedicine, and Biotechnology, 46, 691–705.

    Article  CAS  Google Scholar 

  • Behrens, D. T., Villone, D., Koch, M., Brunner, G., Sorokin, L., Robenek, H., … Hansen, U. (2012). The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens. The Journal of Biological Chemistry, 287, 18700–18709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boateng, J., & Catanzano, O. (2015). Advanced therapeutic dressings for effective wound healing—A review. Journal of Pharmaceutical Sciences, 104, 3653–3680.

    Article  CAS  PubMed  Google Scholar 

  • Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., & Kahru, A. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of Toxicology, 87, 1181–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks, P. C., Sanders, L. C., Aimes, R. T., Stetler-Stevenson, W. G., Quigley, J. P., & Cheresh, D. A. (1994). Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Science, 85(5), 683–693.

    Google Scholar 

  • Burd, D. A., Longaker, M. T., Adzick, N. S., Harrison, M. R., & Ehrlich, H. P. (1990). Foetal wound healing in a large animal model: The deposition of collagen is confirmed. British Journal of Plastic Surgery, 43, 571–577.

    Article  CAS  PubMed  Google Scholar 

  • Burkatovskaya, M., Tegos, G. P., Swietlik, E., Demidova, T. N., Castano A, P., & Hamblin, M. R. (2006). Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice. Biomaterials, 27, 4157–4164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, E. Z., Teo, E. Y., Jing, L., Koh, Y. P., Qian, T. S., Wen, F., … Lim, T. C. (2014). Bio-conjugated polycaprolactone membranes: A novel wound dressing. Archives of Plastic Surgery, 41, 638–646.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavani, A., Zambruno, G., Marconi, A., Manca, V., Marchetti, M., & Giannetti, A. (1993). Distinctive integrin expression in the newly forming epidermis during wound healing in humans. The Journal of Investigative Dermatology, 101, 600–604.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay, S., & Raines, R. T. (2014). Review collagen-based biomaterials for wound healing. Biopolymers, 101, 821–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, D. W.-C., Liao, J.-Y., Liu, S.-J., & Chan, E.-C. (2012). Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: An in vitro and in vivo study. International Journal of Nanomedicine, 7, 763–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Zhang, M., Shao, X., Wang, X., Zhang, L., Xu, P., … Zhang, L. (2015). A laminin mimetic peptide SIKVAV-conjugated chitosan hydrogel promoting wound healing by enhancing angiogenesis, re-epithelialization and collagen deposition. Journal of Materials Chemistry B, 3, 6798–6804.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S.-L., Fu, R.-H., Liao, S.-F., Liu, S.-P., Lin, S.-Z., & Wang, Y.-C. (2018). A PEG-based hydrogel for effective wound care management. Cell Transplantation, 27, 275–284.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chereddy, K. K., Vandermeulen, G., & Préat, V. (2016). PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair and Regeneration, 24, 223–236.

    Article  PubMed  Google Scholar 

  • Chinga-Carrasco, G., & Syverud, K. (2014). Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. Journal of Biomaterials Applications, 29, 423–432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark, R. A. F. (2013). The molecular and cellular biology of wound repair. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Clayman, M. A., Clayman, S. M., & Mozingo, D. W. (2006). The use of collagen-glycosaminoglycan copolymer (integra) for the repair of hypertrophic scars and keloids. Journal of Burn Care & Research, 27, 404–409.

    Article  Google Scholar 

  • Colwell, A. S., Beanes, S. R., Soo, C., Dang, C., Ting, K., Longaker, M. T., … Lorenz, H. P. (2005). Increased angiogenesis and expression of vascular endothelial growth factor during scarless repair. Plastic and Reconstructive Surgery, 115, 204.

    CAS  PubMed  Google Scholar 

  • Colwell, A. S., Krummel, T. M., Longaker, M. T., & Lorenz, H. P. (2006). An in vivo mouse excisional wound model of scarless healing. Plastic and Reconstructive Surgery, 117, 2292.

    Article  CAS  PubMed  Google Scholar 

  • Constant, J. S., Feng, J. J., Zabel, D. D., Yuan, H., Suh, D. Y., Scheuenstuhl, H., … Hussain, M. Z. (2000). Lactate elicits vascular endothelial growth factor from macrophages: A possible alternative to hypoxia. Wound Repair and Regeneration, 8, 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Cowin, A. J., Holmes, T. M., Brosnan, P., & Ferguson, M. W. (2001). Expression of TGF-beta and its receptors in murine fetal and adult dermal wounds. European Journal of Dermatology, 11, 424–431.

    CAS  PubMed  Google Scholar 

  • Cox, J. (2011). Predictors of pressure ulcers in adult critical care patients. American Journal of Critical Care, 20, 364–375.

    Article  PubMed  Google Scholar 

  • Croisier, F., Atanasova, G., Poumay, Y., & Jérôme, C. (2014). Polysaccharide-coated PCL nanofibers for wound dressing applications. Advanced Healthcare Materials, 3, 2032–2039.

    Article  CAS  PubMed  Google Scholar 

  • Cui, H., Webber, M. J., & Stupp, S. I. (2010). Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Peptide Science, 94, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Dagdas, Y. S., Tombuloglu, A., Tekinay, A. B., Dana, A., & Guler, M. O. (2011). Interfiber interactions alter the stiffness of gels formed by supramolecular self-assembled nanofibers. Soft Matter, 7, 3524.

    Article  CAS  Google Scholar 

  • Dash, T. K., & Konkimalla, V. B. (2012). Poly-Ñ”-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158, 15–33.

    Article  CAS  PubMed  Google Scholar 

  • Dechert, T. A., Ducale, A. E., Ward, S. I., & Yager, D. R. (2006). Hyaluronan in human acute and chronic dermal wounds. Wound Repair and Regeneration, 14, 252–258.

    Article  PubMed  Google Scholar 

  • Demidova-Rice, T. N., Hamblin, M. R., & Herman, I. M. (2012). Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, Part 1: Normal and chronic wounds: Biology, causes, and approaches to care. Advances in Skin and Wound Care, 25, 304–314.

    Article  PubMed  Google Scholar 

  • Derynck, R. (1988). Transforming growth factor α. Cell, 54, 593–595.

    Article  CAS  PubMed  Google Scholar 

  • de Vries, H.-J., Middlekoop, E., Mekkes, J.-R., Dutrieux, R.-P., Wildevuur, C.-H., & Westerhof, H. (1994). Dermal regeneration in native non-cross-linked collagen sponges with different extracellular matrix molecules. Wound Repair and Regeneration, 2(1), 37–47.

    Google Scholar 

  • Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings—A review. Biomedicine, 5(4), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doillon, C. J. (1988). Porous collagen sponge wound dressings: In vivo and in vitro studies. Journal of Biomaterials Applications, 2, 562–578.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y., Sigen, A., Rodrigues, M., Li, X., Kwon, S. H., Kosaric, N., … Gurtner, G. C. (2017). Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Advanced Functional Materials, 27, 1606619.

    Article  CAS  Google Scholar 

  • Dorward, D. A., Lucas, C. D., Chapman, G. B., Haslett, C., Dhaliwal, K., & Rossi, A. G. (2015). The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. The American Journal of Pathology, 185, 1172–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugina, V., Fontao, L., Chaponnier, C., Vasiliev, J., & Gabbiani, G. (2001). Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. Journal of Cell Science, 114, 3285–3296.

    CAS  PubMed  Google Scholar 

  • Ehrlich, H. P., & Krummel, T. M. (1996). Regulation of wound healing from a connective tissue perspective. Wound Repair and Regeneration, 4, 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Enoch, S., & Leaper, D. J. (2005). Basic science of wound healing. Surgery, 23, 37–42.

    Google Scholar 

  • Estes, J. M., Berg, J. S. V., Adzick, N. S., MacGillivray, T. E., Desmoulière, A., & Gabbiani, G. (1994). Phenotypic and functional features of myofibroblasts in sheep fetal wounds. Differentiation, 56, 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Faga, A., Nicoletti, G., Brenta, F., Scevola, S., Abatangelo, G., & Brun, P. (2013). Hyaluronic acid three-dimensional scaffold for surgical revision of retracting scars: A human experimental study. International Wound Journal, 10, 329–335.

    Article  PubMed  Google Scholar 

  • Fagerholm, P., Lagali, N. S., Ong, J. A., Merrett, K., Jackson, W. B., Polarek, J. W., … Griffith, M. (2014). Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials, 35, 2420–2427.

    Article  CAS  PubMed  Google Scholar 

  • Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced Drug Delivery Reviews, 107, 367–392.

    Article  CAS  PubMed  Google Scholar 

  • Gabay, M., & Boucher, B. A. (2013). An essential primer for understanding the role of topical hemostats, surgical sealants, and adhesives for maintaining hemostasis. Pharmacotherapy, 33, 935–955.

    Article  PubMed  Google Scholar 

  • Gautam, S., Chou, C.-F., Dinda, A. K., Potdar, P. D., & Mishra, N. C. (2014). Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Materials Science and Engineering: C, 34, 402–409.

    Article  CAS  Google Scholar 

  • Ghorbani, S., Eyni, H., Tiraihi, T., Asl, L. S., Soleimani, M., Atashi, A., … Warkiani, M. E. (2018). Combined effects of 3D bone marrow stem cell-seeded wet-electrospun poly lactic acid scaffolds on full-thickness skin wound healing. International Journal of Polymeric Materials and Polymeric Biomaterials, 67, 905–912.

    Article  CAS  Google Scholar 

  • Gil, E. S., Mandal, B. B., Park, S.-H., Marchant, J. K., Omenetto, F. G., & Kaplan, D. L. (2010). Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Biomaterials, 31, 8953–8963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gohel, M. S., Windhaber, R. A. J., Tarlton, J. F., Whyman, M. R., & Poskitt, K. R. (2008). The relationship between cytokine concentrations and wound healing in chronic venous ulceration. Journal of Vascular Surgery, 48, 1272–1277.

    Article  PubMed  Google Scholar 

  • Gokarneshan, N., Anitha Rachel, D., Rajendran, V., Lavanya, B., & Ghoshal, A. (2015). Smart textile wound dressings. In Emerging research trends in medical textiles (pp. 27–38). Singapore: Springer.

    Chapter  Google Scholar 

  • Goldman, R. (2004). Growth factors and chronic wound healing: Past, present, and future. Advances in Skin and Wound Care, 17, 24–35.

    Article  PubMed  Google Scholar 

  • Gordon, A., Kozin, E. D., Keswani, S. G., Vaikunth, S. S., Katz, A. B., Zoltick, P. W., … Crombleholme, T. M. (2008). Permissive environment in postnatal wounds induced by adenoviral-mediated overexpression of the anti-inflammatory cytokine interleukin-10 prevents scar formation. Wound Repair and Regeneration, 16, 70–79.

    Article  PubMed  Google Scholar 

  • Greaves, N. S., Ashcroft, K. J., Baguneid, M., & Bayat, A. (2013). Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. Journal of Dermatological Science, 72, 206–217.

    Article  CAS  PubMed  Google Scholar 

  • Guo, S., & DiPietro, L. A. (2010). Factors affecting wound healing. Journal of Dental Research, 89, 219–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakkarainen, T., Koivuniemi, R., Kosonen, M., Escobedo-Lucea, C., Sanz-Garcia, A., Vuola, J., … Kavola, H. (2016). Nanofibrillar cellulose wound dressing in skin graft donor site treatment. Journal of Controlled Release, 244, 292–301.

    Article  CAS  PubMed  Google Scholar 

  • Han, G., & Ceilley, R. (2017). Chronic wound healing: A review of current management and treatments. Advances in Therapy, 34, 599–610.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartgerink, J. D., Beniash, E., & Stupp, S. I. (2001). Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 294, 1684–1688.

    Article  CAS  PubMed  Google Scholar 

  • Hartgerink, J. D., Beniash, E., & Stupp, S. I. (2002). Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proceedings of the National Academy of Sciences of the United States of America, 99, 5133–5138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawiger, J. (1987). Formation and regulation of platelet and fibrin hemostatic plug. Human Pathology, 18, 111–122.

    Article  CAS  PubMed  Google Scholar 

  • Haynes, J. H., Johnson, D. E., Mast, B. A., Diegelmann, R. F., Salzberg, D. A., Cohen, I. K., & Krummel, T. M. (1994). Platelet-derived growth factor induces fetal wound fibrosis. Journal of Pediatric Surgery, 29, 1405–1408.

    Article  CAS  PubMed  Google Scholar 

  • Heimbach, D. M., Warden, G. D., Luterman, A., Jordan, M. H., Ozobia, N., Ryan, C. M., … Dimick, A. R. (2003). Multicenter postapproval clinical trial of Integra® dermal regeneration template for burn treatment. The Journal of Burn Care & Rehabilitation, 24, 42–48.

    Article  Google Scholar 

  • Helary, C., Zarka, M., & Giraud-Guille, M. M. (2012). Fibroblasts within concentrated collagen hydrogels favour chronic skin wound healing. Journal of Tissue Engineering and Regenerative Medicine, 6, 225–237.

    Article  CAS  PubMed  Google Scholar 

  • Hendricks, M. P., Sato, K., Palmer, L. C., & Stupp, S. I. (2017). Supramolecular assembly of peptide amphiphiles. Accounts of Chemical Research, 50, 2440–2448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinrichs, W. L., Lommen, E. J., Wildevuur, C. R., & Feijen, J. (1992). Fabrication and characterization of an asymmetric polyurethane membrane for use as a wound dressing. Journal of Applied Biomaterials, 3, 287–303.

    Article  CAS  PubMed  Google Scholar 

  • Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. The Journal of Investigative Dermatology, 127, 526–537.

    Article  CAS  PubMed  Google Scholar 

  • Hoemann, C. D., Marchand, C., Rivard, G.-E., El-Gabalawy, H., & Poubelle, P. E. (2017). Effect of chitosan and coagulation factors on the wound repair phenotype of bioengineered blood clots. International Journal of Biological Macromolecules, 104, 1916–1924.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, B. D., Grashoff, C., & Schwartz, M. A. (2011). Dynamic molecular processes mediate cellular mechanotransduction. Nature, 475, 316–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holavanahalli, R. K., Helm, P. A., & Kowalske, K. J. (2010). Long-term outcomes in patients surviving large burns: The skin. Journal of Burn Care and Research, 31, 631–639.

    Article  PubMed  Google Scholar 

  • Hollander, D. A., Soranzo, C., Falk, S., & Windolf, J. (2001). Extensive traumatic soft tissue loss: Reconstruction in severely injured patients using cultured hyaluronan-based three-dimensional dermal and epidermal autografts. Journal of Trauma and Acute Care Surgery, 50, 1125.

    Article  CAS  Google Scholar 

  • Hong, W. X., Hu, M. S., Esquivel, M., Liang, G. Y., Rennert, R. C., McArdle, A., … Longaker, M. T. (2014). The role of hypoxia-inducible factor in wound healing. Advances in Wound Care, 3, 390–399.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopkinson-Woolley, J., Hughes, D., Gordon, S., & Martin, P. (1994). Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. Journal of Cell Science, 107(Pt 5), 1159–1167.

    PubMed  Google Scholar 

  • Hosseinkhani, H., Hong, P.-D., & Yu, D.-S. (2013). Self-assembled proteins and peptides for regenerative medicine. Chemical Reviews, 113, 4837–4861.

    Article  CAS  PubMed  Google Scholar 

  • Hunyadi, J., Farkas, B., Bertényi, C., Oláh, J., & Dobozy, A. (1988). Keratinocyte grafting: A new means of transplantation for full-thickness wounds. The Journal of Dermatologic Surgery and Oncology, 14, 75–78.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, M. Z., Ghani, Q. P., & Hunt, T. K. (1989). Inhibition of prolyl hydroxylase by poly(ADP-ribose) and phosphoribosyl-AMP. Possible role of ADP-ribosylation in intracellular prolyl hydroxylase regulation. Journal of Biological Chemistry, 264, 7850–7855.

    CAS  PubMed  Google Scholar 

  • Ihara, S., & Motobayashi, Y. (1992). Wound closure in foetal rat skin. Development, 114, 573–582.

    CAS  PubMed  Google Scholar 

  • Jayakumar, R., Reis, R. L., & Mano, J. F. (2006). Chemistry and applications of phosphorylated chitin and chitosan. E-Polymers, 6. https://doi.org/10.1515/epoly.2006.6.1.447

  • Kamoun, E. A., Kenawy, E.-R. S., & Chen, X. (2017). A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research, 8, 217–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnik, S.-K., Brooke, B.-S., Bayes-Genis, A., Sorensen, L., Wythe, J.-D., Schwartz, R.-S., … Li, D.-Y. (2003). A critical role for elastin signaling in vascular morphogenesis and disease, 130(2), 411–423.

    Google Scholar 

  • Kawabata, S., Kanda, N., Hirasawa, Y., Noda, K., Matsuura, Y., Suzuki, S., & Kawai, K. (2018). The utility of silk-elastin hydrogel as a new material for wound healing. Plastic and Reconstructive Surgery. Global Open, 6, e1778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawabata, S., Kawai, K., Somamoto, S., Noda, K., Matsuura, Y., Nakamura, Y., & Suzuki, S. (2017). The development of a novel wound healing material, silk-elastin sponge. Journal of Biomaterials Science. Polymer Edition, 28, 2143–2153.

    Article  CAS  PubMed  Google Scholar 

  • Khatib, L., Cass, D. L., & Adzick, N. S. (2018). Updates in fetal wound healing and scar prevention. In J. A. Katowitz & W. R. Katowitz (Eds.), Pediatric oculoplastic surgery (pp. 45–58). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Khorasani, M. T., Joorabloo, A., Moghaddam, A., Shamsi, H., & MansooriMoghadam, Z. (2018). Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. International Journal of Biological Macromolecules, 114, 1203–1215.

    Article  CAS  PubMed  Google Scholar 

  • Kim, B. J., Cheong, H., Choi, E.-S., Yun, S.-H., Choi, B.-H., Park, K.-S., … Cha, H. J. (2017). Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. Journal of Biomedical Materials Research. Part A, 105, 218–225.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. E., Lee, J., Jang, M., Kwak, M. H., Go, J., Kho, E. K., … Hwang, D. Y. (2015). Accelerated healing of cutaneous wounds using phytochemically stabilized gold nanoparticle deposited hydrocolloid membranes. Biomaterials Science, 3, 509–519.

    Article  CAS  PubMed  Google Scholar 

  • Kirsner, R. S., & Eaglstein, W. H. (1993). The wound healing process. Dermatologic Clinics, 11, 629–640.

    Article  CAS  PubMed  Google Scholar 

  • Klemm, D., Schumann, D., Kramer, F., Heßler, N., Koth, D., & Sultanova, B. (2009). Nanocellulose materials—Different cellulose, different functionality. Macromolecular Symposia, 280, 60–71.

    Article  CAS  Google Scholar 

  • Knighton, D. R., Silver, I. A., & Hunt, T. K. (1981). Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen concentration. Surgery, 90, 262–270.

    CAS  PubMed  Google Scholar 

  • Konop, M., Sulejczak, D., Czuwara, J., Kosson, P., Misicka, A., Lipkowski, A. W., & Rudnicka, L. (2017). The role of allogenic keratin-derived dressing in wound healing in a mouse model. Wound Repair and Regeneration, 25, 62–74.

    Article  PubMed  Google Scholar 

  • Kristiansen, K. A., Schirmer, B. C., Aachmann, F. L., SkjÃ¥k-Bræk, G., Draget, K. I., & Christensen, B. E. (2009). Novel alginates prepared by independent control of chain stiffness and distribution of G-residues: Structure and gelling properties. Carbohydrate Polymers, 77, 725–735.

    Article  CAS  Google Scholar 

  • Kuo, C. K., & Ma, P. X. (2001). Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 22, 511–521.

    Article  CAS  PubMed  Google Scholar 

  • Lara, H. H., Garza-Treviño, E. N., Ixtepan-Turrent, L., & Singh, D. K. (2011). Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Journal of Nanobiotechnology, 9, 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence, W. T. (1998). Physiology of the acute wound. Clinics in Plastic Surgery, 25, 321–340.

    CAS  PubMed  Google Scholar 

  • Lazarus, G. S., Cooper, D. M., Knighton, D. R., Margolis, D. J., Pecoraro, R. E., Rodeheaver, G., & Robson, M. C. (1994). Definitions and guidelines for assessment of wounds and evaluation of healing. Archives of Dermatology, 130, 489–493.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37, 106–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, P.-Y., Li, Z., & Huang, L. (2003). Thermosensitive hydrogel as a Tgf-β1 gene delivery vehicle enhances diabetic wound healing. Pharmaceutical Research, 20, 1995–2000.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Chen, J., & Kirsner, R. (2007). Pathophysiology of acute wound healing. Clinics in Dermatology, 25, 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. (2006). Overexpression of Laminin-8 in Human Dermal Microvascular Endothelial Cells Promotes Angiogenesis-Related Functions. The Journal of investigative dermatology, 2, 434–440.

    Google Scholar 

  • Li, Q., Lu, F., Zhou, G., Yu, K., Lu, B., Xiao, Y., … Lan, G. (2017). Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing. Biomacromolecules, 18, 3766–3775.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Li, L., Guo, C., Qin, H., & Yu, X. (2017). A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: Strontium loaded Silk fibroin/Sodium alginate (SF/SA) blend films. International Journal of Biological Macromolecules, 104, 969–978.

    Article  CAS  PubMed  Google Scholar 

  • Liechty, K. W., Adzick, N. S., & Crombleholme, T. M. (2000). Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine, 12, 671–676.

    Article  CAS  PubMed  Google Scholar 

  • Liechty, K. W., Crombleholme, T. M., Cass, D. L., Martin, B., & Adzick, N. S. (1998). Diminished interleukin-8 (IL-8) production in the fetal wound healing response. The Journal of Surgical Research, 77, 80–84.

    Article  CAS  PubMed  Google Scholar 

  • Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302–325.

    Article  CAS  Google Scholar 

  • Lin, R. Y., Sullivan, K. M., Argenta, P. A., Meuli, M., Lorenz, H. P., & Adzick, N. S. (1995). Exogenous transforming growth factor-beta amplifies its own expression and induces scar formation in a model of human fetal skin repair. Annals of Surgery, 222, 146–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Xu, K., Wang, H., Jeremy Tan, P. K., Fan, W., Venkatraman, S. S., … Yang, Y.-Y. (2009). Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nature Nanotechnology, 4, 457–463.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Lee, P., Ho, C., Lui, V. C. H., Chen, Y., Che, C., … Wong, K. K. Y. (2010). Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem, 5, 468–475.

    Article  CAS  PubMed  Google Scholar 

  • Lo, D. D., Zimmermann, A. S., Nauta, A., Longaker, M. T., & Lorenz, H. P. (2012). Scarless fetal skin wound healing update. Birth Defects Research Part C Embryo Today Reviews, 96, 237–247.

    Article  CAS  PubMed  Google Scholar 

  • Lobmann, R., Ambrosch, A., Schultz, G., Waldmann, K., Schiweck, S., & Lehnert, H. (2002). Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia, 45, 1011–1016.

    Article  CAS  PubMed  Google Scholar 

  • Longaker, M. T., Whitby, D. J., Ferguson, M. W., Lorenz, H. P., Harrison, M. R., & Adzick, N. S. (1994). Adult skin wounds in the fetal environment heal with scar formation. Annals of Surgery, 219, 65–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longaker, M. T., Whitby, D. J., Jennings, R. W., Duncan, B. W., Ferguson, M. W. J., Harrison, M. R., & Adzick, N. S. (1991). Fetal diaphragmatic wounds heal with scar formation. The Journal of Surgical Research, 50, 375–385.

    Article  CAS  PubMed  Google Scholar 

  • Lord, M. S., Cheng, B., McCarthy, S. J., Jung, M., & Whitelock, J. M. (2011). The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins. Biomaterials, 32, 6655–6662.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, H. P., Longaker, M. T., Perkocha, L. A., Jennings, R. W., Harrison, M. R., & Adzick, N. S. (1992). Scarless wound repair: A human fetal skin model. Development, 114, 253–259.

    CAS  PubMed  Google Scholar 

  • Lorenz, H. P., Whitby, D. J., Longaker, M. T., & Adzick, N. S. (1993). Fetal wound healing. The ontogeny of scar formation in the non-human primate. Annals of Surgery, 217, 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losi, P., Briganti, E., Errico, C., Lisella, A., Sanguinetti, E., Chiellini, F., & Soldani, G. (2013). Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomaterialia, 9, 7814–7821.

    Article  CAS  PubMed  Google Scholar 

  • Lucas, T., Waisman, A., Ranjan, R., Roes, J., Krieg, T., Müller, W., … Eming, S. A. (2010). Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology, 184, 3964–3977.

    Article  CAS  Google Scholar 

  • Lynch, S. E., Nixon, J. C., Colvin, R. B., & Antoniades, H. N. (1987). Role of platelet-derived growth factor in wound healing: Synergistic effects with other growth factors. Proceedings of the National Academy of Sciences of the United States of America, 84, 7696–7700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3, 1377–1397.

    Article  CAS  PubMed  Google Scholar 

  • Malafaya, P. B., Silva, G. A., & Reis, R. L. (2007). Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 59, 207–233.

    Article  CAS  PubMed  Google Scholar 

  • Mammadov, R., Mammadov, B., Guler, M. O., & Tekinay, A. B. (2012). Growth factor binding on heparin mimetic peptide nanofibers. Biomacromolecules, 13, 3311–3319.

    Article  CAS  PubMed  Google Scholar 

  • Mao, J. S., Liu, H. F., Yin, Y. J., & Yao, K. D. (2003). The properties of chitosan–gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials, 24, 1621–1629.

    Article  CAS  PubMed  Google Scholar 

  • Martin, P. (1997). Wound healing—Aiming for perfect skin regeneration. Science, 276, 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Matson, J. B., Zha, R. H., & Stupp, S. I. (2011). Peptide self-assembly for crafting functional biological materials. Current Opinion in Solid State & Materials Science, 15, 225–235.

    Article  CAS  Google Scholar 

  • Medhe, S., Bansal, P., & Srivastava, M. M. (2014). Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: A combinational study. Applied Nanoscience, 4, 153–161.

    Article  CAS  Google Scholar 

  • Menke, N. B., Ward, K. R., Witten, T. M., Bonchev, D. G., & Diegelmann, R. F. (2007). Impaired wound healing. Clinics in Dermatology, 25, 19–25.

    Article  PubMed  Google Scholar 

  • Michelacci, Y. M. (2003). Collagens and proteoglycans of the corneal extracellular matrix. Brazilian Journal of Medical and Biological Research, 36, 1037–1046.

    Article  CAS  PubMed  Google Scholar 

  • Min, B.-M., Lee, G., Kim, S. H., Nam, Y. S., Lee, T. S., & Park, W. H. (2004). Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 25, 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  • Mithieux, S. M., Tu, Y., Korkmaz, E., Braet, F., & Weiss, A. S. (2009). In situ polymerization of tropoelastin in the absence of chemical cross-linking. Biomaterials, 30, 431–435.

    Article  CAS  PubMed  Google Scholar 

  • MogoÅŸanu, G. D., & Grumezescu, A. M. (2014). Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics, 463, 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Mohandas, A., Kumar, P. T. S., Raja, B., Lakshmanan, V.-K., & Jayakumar, R. (2015). Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds. International Journal of Nanomedicine, 10, 53–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohiti-Asli, M., Saha, S., Murphy, S. V., Gracz, H., Pourdeyhimi, B., Atala, A., & Loboa, E. G. (2017). Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105, 327–339.

    Article  CAS  PubMed  Google Scholar 

  • Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology, 8, 958–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motherwell, J. M., Anderson, C. R., & Murfee, W. L. (2018). Endothelial cell phenotypes are maintained during angiogenesis in cultured microvascular networks. Scientific Reports, 8, 5887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muangman, P., Deubner, H., Honari, S., Heimbach, D. M., Engrav, L. H., Klein, M. B., & Gibran, N. S. (2006). Correlation of clinical outcome of Integra application with microbiologic and pathological biopsies. Journal of Trauma and Acute Care Surgery, 61, 1212.

    Article  Google Scholar 

  • Murakami, K., Aoki, H., Nakamura, S., Nakamura, S., Takikawa, M., Hanzawa, M., … Ishihara, M. (2010). Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials, 31, 83–90.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, S. V., Skardal, A., Song, L., Sutton, K., Haug, R., Mack, D. L., … Atala, A. (2017). Solubilized amnion membrane hyaluronic acid hydrogel accelerates full-thickness wound healing. Stem Cells Translational Medicine, 6, 2020–2032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray, P. J., & Wynn, T. A. (2011). Protective and pathogenic functions of macrophage subsets. Nature Reviews. Immunology, 11, 723–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napavichayanun, S., Yamdech, R., & Aramwit, P. (2016). The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: In vitro, in vivo and clinical studies. Archives of Dermatological Research, 308, 123–132.

    Article  CAS  PubMed  Google Scholar 

  • Nath, R. K., LaRegina, M., Markham, H., Ksander, G. A., & Weeks, P. M. (1994). The expression of transforming growth factor type beta in fetal and adult rabbit skin wounds. Journal of Pediatric Surgery, 29, 416–421.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, B. P., Ryan, M. C., Gil, S. G., & Carter, W. G. (2000). Deposition of laminin 5 in epidermal wounds regulates integrin signaling and adhesion. Current Opinion in Cell Biology, 12, 554–562.

    Article  CAS  PubMed  Google Scholar 

  • Niece, K. L., Hartgerink, J. D., Donners, J. J. J. M., & Stupp, S. I. (2003). Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. Journal of the American Chemical Society, 125, 7146–7147.

    Article  CAS  PubMed  Google Scholar 

  • Nunan, R., Harding, K. G., & Martin, P. (2014). Clinical challenges of chronic wounds: Searching for an optimal animal model to recapitulate their complexity. Disease Models & Mechanisms, 7, 1205–1213.

    Article  CAS  Google Scholar 

  • Nurden, A. T., Nurden, P., Sanchez, M., Andia, I., & Anitua, E. (2008). Platelets and wound healing. Frontiers in Bioscience, 13, 3525–3548.

    Article  CAS  Google Scholar 

  • O’Kane, S., & Ferguson, M. W. (1997). Transforming growth factor beta s and wound healing. The International Journal of Biochemistry & Cell Biology, 29, 63–78.

    Article  Google Scholar 

  • Okamoto, Y., Yano, R., Miyatake, K., Tomohiro, I., Shigemasa, Y., & Minami, S. (2003). Effects of chitin and chitosan on blood coagulation. Carbohydrate Polymers, 53, 337–342.

    Article  CAS  Google Scholar 

  • Olutoye, O. O., Alaish, S. M., Carr, M. E., Paik, M., Yager, D. R., Cohen, I. K., & Diegelmann, R. F. (1995). Aggregatory characteristics and expression of the collagen adhesion receptor in fetal porcine platelets. Journal of Pediatric Surgery, 30, 1649–1653.

    Article  CAS  PubMed  Google Scholar 

  • Olutoye, O. O., Zhu, X., Cass, D. L., & Smith, C. W. (2005). Neutrophil recruitment by fetal porcine endothelial cells: Implications in scarless fetal wound healing. Pediatric Research, 58, 1290–1294.

    Article  PubMed  Google Scholar 

  • Ortega, S., Ittmann, M., Tsang, S. H., Ehrlich, M., & Basilico, C. (1998). Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proceedings of the National Academy of Sciences of the United States of America, 95, 5672–5677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73, 1712–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palta, S., Saroa, R., & Palta, A. (2014). Overview of the coagulation system. Indian Journal of Anaesthesia, 58, 515–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parani, M., Lokhande, G., Singh, A., & Gaharwar, A. K. (2016). Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Applied Materials & Interfaces, 8, 10049–10069.

    Article  CAS  Google Scholar 

  • Park, M., Kim, B.-S., Shin, H. K., Park, S.-J., & Kim, H.-Y. (2013). Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation. Materials Science & Engineering. C, Materials for Biological Applications, 33, 5051–5057.

    Article  CAS  Google Scholar 

  • Pastar, I., Stojadinovic, O., Krzyzanowska, A., Barrientos, S., Stuelten, C., Zimmerman, K., … Tomic-Canic, M. (2010). Attenuation of the transforming growth factor β-signaling pathway in chronic venous ulcers. Molecular Medicine, 16, 92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peppas, N. A., Keys, K. B., Torres-Lugo, M., & Lowman, A. M. (1999). Poly(ethylene glycol)-containing hydrogels in drug delivery. Journal of Controlled Release, 62, 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Perumal, G., Pappuru, S., Chakraborty, D., Maya Nandkumar, A., Chand, D. K., & Doble, M. (2017). Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications. Materials Science & Engineering. C, Materials for Biological Applications, 76, 1196–1204.

    Article  CAS  Google Scholar 

  • Pesce, J. T., Ramalingam, T. R., Mentink-Kane, M. M., Wilson, M. S., El Kasmi, K. C., Smith, A. M., … Wynn, T. A. (2009). Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathogens, 5, e1000371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34, 641–678.

    Article  CAS  Google Scholar 

  • Pinkas, D. M., Ding, S., Raines, R. T., & Barron, A. E. (2011). Tunable, post-translational hydroxylation of collagen Domains in Escherichia coli. ACS Chemical Biology, 6, 320–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porporato, P. E., Payen, V. L., De Saedeleer, C. J., Préat, V., Thissen, J.-P., Feron, O., & Sonveaux, P. (2012). Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis, 15, 581–592.

    Article  CAS  PubMed  Google Scholar 

  • Praveen, G., Sreerekha, P. R., Menon, D., Nair, S. V., & Chennazhi, K. P. (2012). Fibrin nanoconstructs: A novel processing method and their use as controlled delivery agents. Nanotechnology, 23, 095102.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Rajendran, N. K., Kumar, S. S. D., Houreld, N. N., & Abrahamse, H. (2018). A review on nanoparticle based treatment for wound healing. Journal of Drug Delivery Science and Technology, 44, 421–430.

    Article  CAS  Google Scholar 

  • Reinke, J. M., & Sorg, H. (2012). Wound repair and regeneration. European Surgical Research, 49, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor Perspectives in Biology, 3, a004978.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rnjak-Kovacina, J., Wise, S. G., Li, Z., Maitz, P. K. M., Young, C. J., Wang, Y., & Weiss, A. S. (2011). Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials, 32, 6729–6736.

    Article  CAS  PubMed  Google Scholar 

  • Rnjak-Kovacina, J., Wise, S. G., Li, Z., Maitz, P. K. M., Young, C. J., Wang, Y., & Weiss, A. S. (2012). Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. Acta Biomaterialia, 8, 3714–3722.

    Article  CAS  PubMed  Google Scholar 

  • Robson, M. C. (1997). Wound infection. A failure of wound healing caused by an imbalance of bacteria. The Surgical Clinics of North America, 77, 637–650.

    Article  CAS  PubMed  Google Scholar 

  • Robson, M. C., Steed, D. L., & Franz, M. G. (2001). Wound healing: Biologic features and approaches to maximize healing trajectories. Current Problems in Surgery, 38, 72–140.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Cabello, J. C., González de Torre, I., Ibañez-Fonseca, A., & Alonso, M. (2018). Bioactive scaffolds based on elastin-like materials for wound healing. Advanced Drug Delivery Reviews, 129, 118–133.

    Article  PubMed  CAS  Google Scholar 

  • Ronfard, V., Broly, H., Mitchell, V., Galizia, J. P., Hochart, D., Chambon, E., … Huart, J. J. (1991). Use of human keratinocytes cultured on fibrin glue in the treatment of burn wounds. Burns, 17, 181–184.

    Article  CAS  PubMed  Google Scholar 

  • Ross, R., Raines, E. W., & Bowen-Pope, D. F. (1986). The biology of platelet-derived growth factor. Cell, 46, 155–169.

    Article  CAS  PubMed  Google Scholar 

  • Rossiter, H., Barresi, C., Pammer, J., Rendl, M., Haigh, J., Wagner, E. F., & Tschachler, E. (2004). Loss of vascular endothelial growth factor A activity in murine epidermal keratinocytes delays wound healing and inhibits tumor formation. Cancer Research, 64, 3508–3516.

    Article  CAS  PubMed  Google Scholar 

  • Rowlatt, U. (1979). Intrauterine wound healing in a 20 week human fetus. Virchows Archiv. A, Pathological Anatomy and Histology, 381, 353–361.

    Article  CAS  PubMed  Google Scholar 

  • Saeed, S. M., Mirzadeh, H., Zandi, M., & Barzin, J. (2017). Designing and fabrication of curcumin loaded PCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing. Progress in Biomaterials, 6, 39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandri, G., Aguzzi, C., Rossi, S., Bonferoni, M. C., Bruni, G., Boselli, C., … Ferrari, F. (2017). Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomaterialia, 57, 216–224.

    Article  CAS  PubMed  Google Scholar 

  • Schierle, C. F., De la Garza, M., Mustoe, T. A., & Galiano, R. D. (2009). Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair and Regeneration, 17, 354–359.

    Article  PubMed  Google Scholar 

  • Schmidt, E. P., Lee, W. L., Zemans, R. L., Yamashita, C., & Downey, G. P. (2011). On, around, and through: Neutrophil-endothelial interactions in innate immunity. Physiology, 26, 334–347.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, A., Garlick, J. A., & Egles, C. (2008). Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One, 3, e1410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schultz, G. S., & Wysocki, A. (2009). Interactions between extracellular matrix and growth factors in wound healing. Wound Repair and Regeneration, 17, 153–162.

    Article  PubMed  Google Scholar 

  • Sen, C. K., Gordillo, G. M., Roy, S., Kirsner, R., Lambert, L., Hunt, T. K., … Longaker, M. T. (2009). Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair and Regeneration, 17, 763–771.

    Article  PubMed  PubMed Central  Google Scholar 

  • Senger, D. R., Claffey, K. P., Benes, J. E., Perruzzi, C. A., Sergiou, A. P., & Detmar, M. (1997). Angiogenesis promoted by vascular endothelial growth factor: Regulation through α1β1 and α2β1 integrins. Proceedings of the National Academy of Sciences of the United States of America, 94, 13612–13617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senger, D. R., Ledbetter, S. R., Claffey, K. P., Papadopoulos-Sergiou, A., Peruzzi, C. A., & Detmar, M. (1996). Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. The American Journal of Pathology, 149, 293–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A., & Pamer, E. G. (2003). TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity, 19, 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Shenderova, A., Burke, T. G., & Schwendeman, S. P. (1999). The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharmaceutical Research, 16, 241–248.

    Article  CAS  PubMed  Google Scholar 

  • Shi, G., Chen, W., Zhang, Y., Dai, X., Zhang, X., & Wu, Z. (2018). An antifouling hydrogel containing silver nanoparticles for modulating the therapeutic immune response in chronic wound healing. Langmuir, 35(5), 1837–1845.

    Article  PubMed  CAS  Google Scholar 

  • Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual Review of Biochemistry, 78, 929–958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, G. A., Czeisler, C., Niece, K. L., Beniash, E., Harrington, D. A., Kessler, J. A., & Stupp, S. I. (2004). Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science, 303, 1352–1355.

    Article  CAS  PubMed  Google Scholar 

  • Singer, A. J., & Clark, R. A. F. (1999). Cutaneous wound healing. The New England Journal of Medicine, 341, 738–746.

    Article  CAS  PubMed  Google Scholar 

  • Singer, A. J., Tassiopoulos, A., & Kirsner, R. S. (2017). Evaluation and management of lower-extremity ulcers. The New England Journal of Medicine, 377, 1559–1567.

    Article  PubMed  Google Scholar 

  • Skardal, A., Murphy, S. V., Crowell, K., Mack, D., Atala, A., & Soker, S. (2017). A tunable hydrogel system for long-term release of cell-secreted cytokines and bioprinted in situ wound cell delivery. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105, 1986–2000.

    Article  CAS  PubMed  Google Scholar 

  • Solway, D. R., Clark, W. A., & Levinson, D. J. (2011). A parallel open-label trial to evaluate microbial cellulose wound dressing in the treatment of diabetic foot ulcers. International Wound Journal, 8, 69–73.

    Article  PubMed  Google Scholar 

  • Solway, D. R., Consalter, M., & Levinson, D. J. (2010). Microbial cellulose wound dressing in the treatment of skin tears in the frail elderly. Wounds, 22, 17–19.

    PubMed  Google Scholar 

  • Somasundaram, K., & Prathap, K. (1970). Intra-uterine healing of skin wounds in rabbit foetuses. The Journal of Pathology, 100, 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan, B., Kumar, R., Shanmugam, K., Sivagnam, U. T., Reddy, N. P., & Sehgal, P. K. (2010). Porous keratin scaffold-promising biomaterial for tissue engineering and drug delivery. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 92, 5–12.

    Article  PubMed  CAS  Google Scholar 

  • Steed, D. L. (1997). The role of growth factors in wound healing. The Surgical Clinics of North America, 77, 575–586.

    Article  CAS  PubMed  Google Scholar 

  • Sudheesh Kumar, P. T., Lakshmanan, V.-K., Anilkumar, T. V., Ramya, C., Reshmi, P., Unnikrishnan, A. G., … Jayakumar, R. (2012). Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Applied Materials & Interfaces, 4, 2618–2629.

    Article  CAS  Google Scholar 

  • Sun, T., Haycock, J., & Macneil, S. (2006). In situ image analysis of interactions between normal human keratinocytes and fibroblasts cultured in three-dimensional fibrin gels. Biomaterials, 27, 3459–3465.

    Article  CAS  PubMed  Google Scholar 

  • Syeda, M. M., Jing, X., Mirza, R. H., Yu, H., Sellers, R. S., & Chi, Y. (2012). Prostaglandin transporter modulates wound healing in diabetes by regulating prostaglandin-induced angiogenesis. The American Journal of Pathology, 181, 334–346.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, A., Harding, K. G., & Moore, K. (2000). Alginates from wound dressings activate human macrophages to secrete tumour necrosis factor-α. Biomaterials, 21, 1797–1802.

    Article  CAS  PubMed  Google Scholar 

  • Tocco, I., Zavan, B., Bassetto, F., & Vindigni, V. (2012). Nanotechnology-based therapies for skin wound regeneration. Journal of Nanomaterials, 2012, 1–11.

    Article  CAS  Google Scholar 

  • Toksoz, S., Mammadov, R., Tekinay, A. B., & Guler, M. O. (2011). Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles. Journal of Colloid and Interface Science, 356, 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Uzunalli, G., Mammadov, R., Yesildal, F., Alhan, D., Ozturk, S., Ozgurtas, T., … Tekinay, A. B. (2016). Angiogenic heparin-mimetic peptide nanofiber gel improves regenerative healing of acute wounds. ACS Biomaterials Science and Engineering. https://doi.org/10.1021/acsbiomaterials.6b00165

    Article  CAS  Google Scholar 

  • Uzunalli, G., Soran, Z., Erkal, T. S., Dagdas, Y. S., Dinc, E., Hondur, A. M., … Tekinay, A. B. (2014). Bioactive self-assembled peptide nanofibers for corneal stroma regeneration. Acta Biomaterialia, 10, 1156–1166.

    Article  CAS  PubMed  Google Scholar 

  • Van De Water, L., Varney, S., & Tomasek, J. J. (2013). Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: Opportunities for new therapeutic intervention. Advances in Wound Care, 2, 122–141.

    Article  Google Scholar 

  • van der Rest, M., & Garrone, R. (1991). Collagen family of proteins. FASEB Journal, 5, 2814–2823.

    Article  PubMed  Google Scholar 

  • Vasconcelos, A., Gomes, A. C., & Cavaco-Paulo, A. (2012). Novel silk fibroin/elastin wound dressings. Acta Biomaterialia, 8, 3049–3060.

    Article  CAS  PubMed  Google Scholar 

  • Velnar, T., Bailey, T., & Smrkolj, V. (2009). The wound healing process: An overview of the cellular and molecular mechanisms. The Journal of International Medical Research, 37, 1528–1542.

    Article  CAS  PubMed  Google Scholar 

  • Versteeg, H. H., Heemskerk, J. W. M., Levi, M., & Reitsma, P. H. (2013). New fundamentals in hemostasis. Physiological Reviews, 93, 327–358.

    Article  CAS  PubMed  Google Scholar 

  • Vink, E. T. H., Rábago, K. R., Glassner, D. A., Springs, B., O’Connor, R. P., Kolstad, J., & Gruber, P. R. (2004). The sustainability of NatureWorksâ„¢ polylactide polymers and Ingeoâ„¢ polylactide fibers: An update of the future. Macromolecular Bioscience, 4, 551–564.

    Article  CAS  PubMed  Google Scholar 

  • Visse, R., & Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circulation Research, 92, 827–839.

    Article  CAS  PubMed  Google Scholar 

  • Voigt, J., & Driver, V. R. (2012). Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: A systematic review and meta-analysis of randomized controlled trials. Wound Repair and Regeneration, 20, 317–331.

    Article  PubMed  Google Scholar 

  • Wadman, M. (2005). Scar prevention: The healing touch. Nature, 436(7054), 1079–1080.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, R., Hayashi, R., Kimura, Y., Tanaka, Y., Kageyama, T., Hara, S., … Nishida, K. (2011). A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Engineering. Part A, 17, 2213–2219.

    Article  CAS  PubMed  Google Scholar 

  • Whitby, D. J., & Ferguson, M. W. (1991). The extracellular matrix of lip wounds in fetal, neonatal and adult mice. Development, 112, 651–668.

    CAS  PubMed  Google Scholar 

  • Willenborg, S., Lucas, T., van Loo, G., Knipper, J. A., Krieg, T., Haase, I., … Eming, S. A. (2012). CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood, 120, 613–625.

    Article  CAS  PubMed  Google Scholar 

  • Willerth, S. M., & Sakiyama-Elbert, S. E. (2007). Approaches to neural tissue engineering using scaffolds for drug delivery. Advanced Drug Delivery Reviews, 59, 325–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolberg, A. S. (2007). Thrombin generation and fibrin clot structure. Blood Reviews, 21, 131–142.

    Article  CAS  PubMed  Google Scholar 

  • Wulff, B. C., & Wilgus, T. A. (2013). Mast cell activity in the healing wound: More than meets the eye? Experimental Dermatology, 22, 507–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiu, Z., Zhang, Q., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 12, 4271–4275.

    Article  CAS  PubMed  Google Scholar 

  • Xue, M., & Jackson, C. J. (2015). Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Advances in Wound Care, 4, 119–136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, X., Yang, J., Wang, L., Ran, B., Jia, Y., Zhang, L., … Jiang, X. (2017). Pharmaceutical intermediate-modified gold nanoparticles: Against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano, 11, 5737–5745.

    Article  CAS  PubMed  Google Scholar 

  • Yeboah, A., Cohen, R. I., Faulknor, R., Schloss, R., Yarmush, M. L., & Berthiaume, F. (2016). The development and characterization of SDF1α-elastin-like-peptide nanoparticles for wound healing. Journal of Controlled Release, 232, 238–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yergoz, F., Hastar, N., Cimenci, C. E., Ozkan, A. D., Tekinay, T., Guler, M. O., & Tekinay, A. B. (2017). Heparin mimetic peptide nanofiber gel promotes regeneration of full thickness burn injury. Biomaterials, 134, 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Young, A., & McNaught, C.-E. (2011). The physiology of wound healing. Surgery, 29, 475–479.

    Google Scholar 

  • Yu, W., Jiang, Y.-Y., Sun, T.-W., Qi, C., Zhao, H., Chen, F., … He, Y. (2016). Design of a novel wound dressing consisting of alginate hydrogel and simvastatin-incorporated mesoporous hydroxyapatite microspheres for cutaneous wound healing. RSC Advances, 6, 104375–104387.

    Article  CAS  Google Scholar 

  • Zarkoob, H., Bodduluri, S., Ponnaluri, S. V., Selby, J. C., & Sander, E. A. (2015). Substrate stiffness affects human keratinocyte colony formation. Cellular and Molecular Bioengineering, 8, 32–50.

    Article  CAS  PubMed  Google Scholar 

  • Zaulyanov, L., & Kirsner, R. S. (2007). A review of a bi-layered living cell treatment (Apligraf®) in the treatment of venous leg ulcers and diabetic foot ulcers. Clinical Interventions in Aging, 2, 93–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Wu, L., Jing, D., & Ding, J. (2005). A comparative study of porous scaffolds with cubic and spherical macropores. Polymer, 46, 4979–4985.

    Article  CAS  Google Scholar 

  • Zhong, S. P., Zhang, Y. Z., & Lim, C. T. (2010). Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2, 510–525.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, W., Zhao, M., Zhao, Y., & Mou, Y. (2011). A fibrin gel loaded with chitosan nanoparticles for local delivery of rhEGF: Preparation and in vitro release studies. Journal of Materials Science. Materials in Medicine, 22, 1221.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J. (2010). Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials, 31, 4639–4656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwischenberger, J. B., & Robert, L. (1999). Comparison of two topical collagen-based hemostatic sponges during cardiothoracic procedures. Journal of Investigative Surgery, 12, 101–106.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gozde Uzunalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uzunalli, G. (2019). Nanomaterials for Wound Healing. In: Tekinay, A. (eds) Nanomaterials for Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-31202-2_3

Download citation

Publish with us

Policies and ethics