Skip to main content

Spine Safety: Optimum Integration of Technology

  • Chapter
  • First Online:
Value-Based Approaches to Spine Care

Abstract

The twenty-first century brought with it drastic technological advances in spine surgery, resulting in useful tools for surgeons to use in addressing spinal disorders. Improvements in spine instrumentation, imaging capabilities, neuromonitoring, osteotomy and fusion techniques, antifibrinolytic therapies, and minimally invasive techniques have dramatically altered the way surgeons go about their business, thereby improving their ability to fix increasingly complex spinal conditions in an effective and safe manner. It is important that these technologies do not replace surgical principles, such as careful surgical planning, thorough understanding of pathoanatomy, and intense attention to detail during surgery, strict indications, and always preceding with a high degree of caution and alertness. All the technological tools discussed should be regarded as mere tools that aid the surgeon to achieve highest safety within the operating room and should not be taken to enhance safety independently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diffusion of Innovation Theory. Available at http://sphweb.bumc.bu.edu/otlt/MPH-Modules/SB/BehavioralChangeTheories/BehavioralChangeTheories4.html. Accessed 23 Oct 2018.

  2. Menger RP, Connor DE, Thakur JD, et al. A comparison of lumboperitoneal and ventriculoperitoneal shunting for idiopathic intracranial hypertension: an analysis of economic impact and complications using the Nationwide Inpatient Sample. Neurosurg Focus. 2014;37:E4.

    Article  PubMed  Google Scholar 

  3. Harrington PR. Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am. 1962;44-A:591–610.

    Article  CAS  PubMed  Google Scholar 

  4. Moe JH, Kharrat K, Winter RB, et al. Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children. Clin Orthop. 1984;1(185):35–45.

    Google Scholar 

  5. Knoeller SM, Seifried C. Historical perspective: history of spinal surgery. Spine. 2000;25:2838–43.

    Article  CAS  PubMed  Google Scholar 

  6. Hasler CC. A brief overview of 100 years of history of surgical treatment for adolescent idiopathic scoliosis. J Child Orthop. 2013;7:57–62.

    Article  PubMed  Google Scholar 

  7. Harrington PR, Tullos HS. Reduction of severe spondylolisthesis in children. South Med J. 1969;62:1–7.

    Article  CAS  PubMed  Google Scholar 

  8. Roy-Camille R, Roy-Camille M, Demeulenaere C. Osteosynthesis of dorsal, lumbar, and lumbosacral spine with metallic plates screwed into vertebral pedicles and articular apophyses. Presse Med. 1970;78:1447–8.

    CAS  PubMed  Google Scholar 

  9. Schwab F, Blondel B, Chay E, et al. The comprehensive anatomical spinal osteotomy classification. Neurosurgery. 2015;76:S33–41.

    Article  PubMed  Google Scholar 

  10. Lenke LG, Sides BA, Koester LA, et al. Vertebral column resection for the treatment of severe spinal deformity. Clin Orthop. 2010;468:687–99.

    Article  PubMed  Google Scholar 

  11. Saifi C, Laratta JL, Petridis P, et al. Vertebral column resection for rigid spinal deformity. Glob Spine J. 2017;7:280–90.

    Article  Google Scholar 

  12. Gum JL, Carreon LY, Buchowski JM, et al. Utilization trends of pedicle subtraction osteotomies compared to posterior spinal fusion for deformity: a national database analysis between 2008–2011. Scoliosis Spinal Disord. 11. Epub ahead of print August 24, 2016. https://doi.org/10.1186/s13013-016-0081-z.

  13. Chan P, Andras LM, Nielsen E, et al. Comparison of Ponte osteotomies and 3-column osteotomies in the treatment of congenital spinal deformity. J Pediatr Orthop. Epub ahead of print August 2017. https://doi.org/10.1097/BPO.0000000000001057.

    Article  PubMed  Google Scholar 

  14. Laratta JL, Ha A, Shillingford JN, et al. Neuromonitoring in spinal deformity surgery: a multimodality approach. Glob Spine J. 2018;8:68–77.

    Article  Google Scholar 

  15. Vauzelle C, Stagnara P, Jouvinroux P. Functional monitoring of spinal cord activity during spinal surgery. Clin Orthop. 1973;93:173–8.

    Article  Google Scholar 

  16. Nuwer MR, Dawson EG, Carlson LG, et al. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96:6–11.

    Article  CAS  PubMed  Google Scholar 

  17. Gunnarsson T, Krassioukov AV, Sarjeant R, et al. Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine. 2004;29:677–84.

    Article  PubMed  Google Scholar 

  18. Schwartz DM, Auerbach JD, Dormans JP, et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am. 2007;89:2440–9.

    Article  PubMed  Google Scholar 

  19. Fehlings MG, Brodke DS, Norvell DC, et al. The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference? Spine. 2010;35:S37–46.

    Article  PubMed  Google Scholar 

  20. Lesser RP, Raudzens P, Lüders H, et al. Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol. 1986;19:22–5.

    Article  CAS  PubMed  Google Scholar 

  21. Ben-David B, Haller G, Taylor P. Anterior spinal fusion complicated by paraplegia. A case report of a false-negative somatosensory-evoked potential. Spine. 1987;12:536–9.

    Article  CAS  PubMed  Google Scholar 

  22. Minahan RE, Sepkuty JP, Lesser RP, et al. Anterior spinal cord injury with preserved neurogenic “motor” evoked potentials. Clin Neurophysiol. 2001;112:1442–50.

    Article  CAS  PubMed  Google Scholar 

  23. Sutter M, Eggspuehler A, Grob D, et al. The diagnostic value of multimodal intraoperative monitoring (MIOM) during spine surgery: a prospective study of 1,017 patients. Eur Spine J. 2007;16(Suppl 2):S162–70.

    Article  PubMed  Google Scholar 

  24. Menger R, Hefner MI, Savardekar AR, et al. Minimally invasive spine surgery in the pediatric and adolescent population: a case series. Surg Neurol Int. 2018;9:116.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Menger RP, Savardekar AR, Farokhi F, et al. A cost-effectiveness analysis of the integration of robotic spine technology in spine surgery. Neurospine. 2018;15:216–24.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Adogwa O, Parker SL, Bydon A, et al. Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion: 2-year assessment of narcotic use, return to work, disability, and quality of life. J Spinal Disord Tech. 2011;24:479–84.

    PubMed  Google Scholar 

  27. Tian N-F, Wu Y-S, Zhang X-L, et al. Minimally invasive versus open transforaminal lumbar interbody fusion: a meta-analysis based on the current evidence. Eur Spine J. 2013;22:1741–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Seng C, Siddiqui MA, Wong KPL, et al. Five-year outcomes of minimally invasive versus open transforaminal lumbar interbody fusion: a matched-pair comparison study. Spine. 2013;38:2049–55.

    Article  PubMed  Google Scholar 

  29. Lee KH, Yue WM, Yeo W, et al. Clinical and radiological outcomes of open versus minimally invasive transforaminal lumbar interbody fusion. Eur Spine J. 2012;21:2265–70.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goldstein CL, Macwan K, Sundararajan K, et al. Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review. J Neurosurg Spine. 2016;24:416–27.

    Article  PubMed  Google Scholar 

  31. Neal CJ, Rosner MK. Resident learning curve for minimal-access transforaminal lumbar interbody fusion in a military training program. Neurosurg Focus. 2010;28:E21.

    Article  PubMed  Google Scholar 

  32. Lehman RA, Lenke LG, Keeler KA, et al. Computed tomography evaluation of pedicle screws placed in the pediatric deformed spine over an 8-year period. Spine. 2007;32:2679–84.

    Article  PubMed  Google Scholar 

  33. Parker SL, McGirt MJ, Farber SH, et al. Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: analysis of 6816 consecutive screws. Neurosurgery. 2011;68:170–8; discussion 178.

    Article  PubMed  Google Scholar 

  34. Bourgeois AC, Faulkner AR, Pasciak AS, et al. The evolution of image-guided lumbosacral spine surgery. Ann Transl Med. 2015;3:69.

    PubMed  PubMed Central  Google Scholar 

  35. Berlemann U, Heini P, Müller U, et al. Reliability of pedicle screw assessment utilizing plain radiographs versus CT reconstruction. Eur Spine J. 1997;6:406–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mason A, Paulsen R, Babuska JM, et al. The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine. 2014;20:196–203.

    Article  PubMed  Google Scholar 

  37. Tian NF, Huang QS, Zhou P, Zhou Y, Wu R, Lou YXH. Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J. 2011;20:846–59.

    Article  PubMed  Google Scholar 

  38. Kantelhardt SR, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20:860–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schatlo B, Molliqaj G, Cuvinciuc V, et al. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine. 2014;20:636–43.

    Article  PubMed  Google Scholar 

  40. Molliqaj G, Schatlo B, Alaid A, et al. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery. Neurosurg Focus. 2017;42:E14.

    Article  PubMed  Google Scholar 

  41. Joseph JR, Smith BW, Liu X, et al. Current applications of robotics in spine surgery: a systematic review of the literature. Neurosurg Focus. 2017;42:E2.

    Article  PubMed  Google Scholar 

  42. Overley SC, Cho SK, Mehta AI, et al. Navigation and robotics in spinal surgery: where are we now? Neurosurgery. 2017;80:S86–99.

    Article  PubMed  Google Scholar 

  43. Bederman SS, Hahn P, Colin V, et al. Robotic guidance for S2-alar-iliac screws in spinal deformity correction. Clin Spine Surg. 2017;30:E49–53.

    Article  PubMed  Google Scholar 

  44. Gao S, Lv Z, Fang H. Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials. Eur Spine J. 2018;27:921–30.

    Article  PubMed  Google Scholar 

  45. Yu L, Chen X, Margalit A, et al. Robot-assisted vs freehand pedicle screw fixation in spine surgery – a systematic review and a meta-analysis of comparative studies. Int J Med Robot Comput Assist Surg. 2018;14:e1892.

    Article  Google Scholar 

  46. Kim H-J, Kang K-T, Chun H-J, et al. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: a prospective, randomized controlled trial. Int J Med Robot Comput Assist Surg. 2018;14:e1917.

    Article  Google Scholar 

  47. Park SM, Kim HJ, Lee SY, et al. Radiographic and clinical outcomes of robot-assisted posterior pedicle screw fixation: two-year results from a randomized controlled trial. Yonsei Med J. 2018;59:438–44.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shillingford JN, Laratta JL, Park PJ, et al. Human versus robot: a propensity-matched analysis of the accuracy of free hand versus robotic guidance for placement of S2 alar-iliac (S2AI) screws. Spine. 2018;43:E1297–304.

    Article  PubMed  Google Scholar 

  49. Dea N, Fisher CG, Batke J, et al. Economic evaluation comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: a patient-level data cost-effectiveness analysis. Spine J. 2016;16:23–31.

    Article  PubMed  Google Scholar 

  50. Parker SL, Mendenhall SK, Shau DN, et al. Minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis: comparative effectiveness and cost-utility analysis. World Neurosurg. 2014;82:230–8.

    Article  PubMed  Google Scholar 

  51. Vitale MG, Skaggs DL, Pace GI, et al. Best practices in intraoperative neuromonitoring in spine deformity surgery: development of an intraoperative checklist to optimize response. Spine Deform. 2014;2(5):333–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Vitale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Menger, R., Kim, H.J., Vitale, M.G. (2020). Spine Safety: Optimum Integration of Technology. In: Sethi, R., Wright, A., Vitale, M. (eds) Value-Based Approaches to Spine Care . Springer, Cham. https://doi.org/10.1007/978-3-030-31946-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31946-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31945-8

  • Online ISBN: 978-3-030-31946-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics