Skip to main content

Machine Learning Predictive Models for Pile Drivability: An Evaluation of Random Forest Regression and Multivariate Adaptive Regression Splines

  • Conference paper
  • First Online:
Information Technology in Geo-Engineering (ICITG 2019)

Abstract

In recent years, the application of Machine learning (ML) in wide range of industries has grown rapidly. The increase in machine computing capabilities over the past decades has provided the possibility to perform advanced analyses such as ML on big data, which can be effectively used in geotechnical engineering applications. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to the intrinsic complexity as well as various design variables, pile drivability lacks a precise analytical solution with regard to the phenomena involved. In this paper, the random forest regression (RFR) and multivariate adaptive regression splines (MARS) models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses (MCS) and Blow per foot (BPF). In this study, the 10-fold cross validation method and Lasso regularization is adopted for obtaining the model of superior generalization ability and better persuasiveness results. A database of more than four thousand piles is utilized for model development and comparing RFR with MARS model performance from goodness of fit, running time and interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, E.A.L.: Pile driving analysis by the wave equation. J. Eng. Mech. Div. ASCE 86, 35–61 (1960)

    Google Scholar 

  2. Zhou, Y., Li, S., Zhou, C., et al.: Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations. J. Comput. Civil Eng. 33(1), 05018004 (2019)

    Article  Google Scholar 

  3. Attoh-Okine, N.O., Cooger, K., Mensah, S.: Multivariate adaptive regression (MARS) and hinged hyperplanes (HHP) for doweled pavement performance modeling. Constr. Build. Mater. 23(9), 3020–3023 (2009)

    Article  Google Scholar 

  4. Lashkari, A.: Prediction of the shaft resistance of nondisplacement piles in sand. Int. J. Numer. Anal. Meth. Geomech. 37(8), 904–931 (2013)

    Article  Google Scholar 

  5. Mirzahosseini, M.R., Aghaeifar, A., Alavi, A.H., et al.: Permanent deformation analysis of asphalt mixtures using soft computing techniques. Expert Syst. Appl. 38(5), 6081–6100 (2011)

    Article  Google Scholar 

  6. Samui, P., Das, S., Kim, D.: Uplift capacity of suction caisson in clay using multivariate adaptive regression spline. Ocean Eng. 38(17–18), 2123–2127 (2011)

    Article  Google Scholar 

  7. Zhang, W.G., Zhang, R.H., Wang, W., Zhang, F., Goh, A.T.C.: A multivariate adaptive regression splines model for determining horizontal wall deflection envelope for braced excavations in clays. Tunn. Undergr. Space Technol. 84, 461–471 (2019)

    Article  Google Scholar 

  8. Goh, A.T.C., Zhang, Y.M., Zhang, R.H., Zhang, W.G., Xiao, Y.: Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression. Tunn. Undergr. Space Technol. 70, 148–154 (2017)

    Article  Google Scholar 

  9. Goh, A.T.C., Zhang, W.G.: An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines. Eng. Geol. 170, 1–10 (2014)

    Article  Google Scholar 

  10. Zhang, W.G., Goh, A.T.C.: Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geosci. Front. 7, 45–52 (2016)

    Article  Google Scholar 

  11. Goh, A.T.C., Zhang, W.G., Zhang, Y.M., Xiao, Y., Xiang, Y.Z.: Determination of EPB tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach. Bull. Eng. Geol. Env. 77, 489–500 (2018)

    Article  Google Scholar 

  12. Zhang, W.G., Goh, A.T.C.: Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Comput. Geotech. 48, 82–95 (2013)

    Article  Google Scholar 

  13. Zhang, W.G., Goh, A., Zhang, Y.M., et al.: Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines. Eng. Geol. 188, 29–37 (2015)

    Article  Google Scholar 

  14. Zhang, W.G., Goh, A.T.C., Zhang, Y.: Multivariate adaptive regression splines application for multivariate geotechnical problems with big data. Geotech. Geol. Eng. 34(1), 1–12 (2015)

    Google Scholar 

  15. Zhang, W.G., Zhang, R., Goh, A.T.C.: Multivariate adaptive regression splines approach to estimate lateral wall deflection profiles caused by braced excavations in clays. Geotech. Geol. Eng. 36(2), 1349–1363 (2017)

    Google Scholar 

  16. Zhang, W.G., Zhang, Y.M., Goh, A.T.C.: Multivariate adaptive regression splines for inverse analysis of soil and wall properties in braced excavation. Tunn. Undergr. Space Technol. 64, 24–33 (2017)

    Article  Google Scholar 

  17. Rodriguezgaliano, V.F., Mendes, M.P., Garciasoldado, M.J., et al.: Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Sci. Total Environ. 476–477(4), 189–206 (2014)

    Article  Google Scholar 

  18. Zhou, J., Li, X.B., Mitri, H.S.: Classification of rockburst in underground projects: comparison of ten supervised learning methods. J. Comput. Civ. Eng. 30(5), 1–19 (2016)

    Article  Google Scholar 

  19. Zhou, J., Shi, X.Z., et al.: Development of ground movements due to a shield tunnelling prediction model using random forests. In: Geo-China 2016: New Frontiers in Civil Infrastructure. GSP 267 (2016)

    Google Scholar 

  20. Hong, H., Tsangaratos, P., Ilia, I., et al.: Comparing the performance of a logistic regression and a random forest model in landslide susceptibility assessments. The Case of Wuyaun Area, China (2017)

    Google Scholar 

  21. Kuhn, M., Johnson, K.: Applied Predictive Modeling (2013)

    Chapter  MATH  Google Scholar 

  22. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  23. Iverson, L.R., Prasad, A.M., Matthews, S.N., et al.: Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecol. Manag. 254(3), 390–406 (2008)

    Article  Google Scholar 

  24. Lawler, J.J., White, D., Neilson, R.P., et al.: Predicting climate-induced range shifts: model differences and model reliability. Glob. Change Biol. 12(8), 1568–1584 (2006)

    Article  Google Scholar 

  25. Rodriguezgaliano, V.F., Sanchezcastillo, M., et al.: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 71, S0169136815000037 (2015)

    Google Scholar 

  26. Rodriguezgaliano, V.F., Sanchezcastillo, M., Dash, J., et al.: Modelling anomalies in the spring and autumn land surface phenology of the European forest. Biogeosciences Discuss. 12(14), 11833–11861 (2016)

    Article  Google Scholar 

  27. Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R.: Random forests for land cover classification. Pattern Recogn. Lett. 27(4), 294–300 (2006)

    Article  Google Scholar 

  28. Friedman, J.H.: Multivariate adaptive regression spline. Ann. Stat. 19(1), 1–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jekabsons, G.: ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave ver. 1.13.0, Riga Technical University. http://www.cs.rtu.lv/jekabsons/. Accessed 15 May 2016

  30. Jeon, J.K., Rahman, M.S.: Fuzzy Neural Network Models for Geotechnical Problems. Geotechnical Engineering (2008)

    Google Scholar 

  31. Eddy, G.W.F.: A predictive approach to model selection. J. Am. Stat. Assoc. 74(365), 153–160 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Wu, C. (2020). Machine Learning Predictive Models for Pile Drivability: An Evaluation of Random Forest Regression and Multivariate Adaptive Regression Splines. In: Correia, A., Tinoco, J., Cortez, P., Lamas, L. (eds) Information Technology in Geo-Engineering. ICITG 2019. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-32029-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32029-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32028-7

  • Online ISBN: 978-3-030-32029-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics