Skip to main content

Conventional Bioinks

  • Chapter
  • First Online:
3D Bioprinting

Abstract

In 3D bioprinting of living constructs, cells-encapsulated hydrogels should be printable, which are called bioinks. The sources of the bioinks vary from natural to synthetic materials, and their physicochemical and biological characteristics differ by the origin of materials. This chapter covers the chemical, mechanical, and biological properties of conventional bioinks and various applications used for the fabrication of functional cell-laden constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Groll J, Burdick J, Cho D, Derby B, Gelinsky M, Heilshorn S, Jüngst T, Malda J, Mironov V, Nakayama K. A definition of bioinks and their distinction from biomaterial inks. Biofabrication. 2018;11(1):013001.

    Article  CAS  PubMed  Google Scholar 

  2. Jang J. 3D bioprinting and in vitro cardiovascular tissue modeling. Bioengineering. 2017;4(3):71.

    Article  PubMed Central  CAS  Google Scholar 

  3. Jang J, Park JY, Gao G, Cho D-W. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials. 2018;156:88–106.

    Article  CAS  PubMed  Google Scholar 

  4. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim HS, Lee C-G, Lee EY. Alginate lyase: structure, property, and application. Biotechnol Bioprocess Eng. 2011;16(5):843.

    Article  CAS  Google Scholar 

  6. Kundu J, Shim JH, Jang J, Kim SW, Cho DW. An additive manufacturing‐based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286–97.

    Article  CAS  PubMed  Google Scholar 

  7. Murphy WL, Mercurius KO, Koide S, Mrksich M. Substrates for cell adhesion prepared via active site-directed immobilization of a protein domain. Langmuir. 2004;20(4):1026–30.

    Article  CAS  PubMed  Google Scholar 

  8. Faulkner-Jones A, Fyfe C, Cornelissen D-J, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication. 2015;7(4):044102.

    Article  PubMed  Google Scholar 

  9. Yu Y, Zhang Y, Martin JA, Ozbolat IT. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng. 2013;135(9):091011.

    Article  Google Scholar 

  10. Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication. 2010;2(4):045004.

    Article  PubMed  CAS  Google Scholar 

  11. Shim J-H, Lee J-S, Kim JY, Cho D-W. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng. 2012;22(8):085014.

    Article  CAS  Google Scholar 

  12. Venkatesan J, Anil S, Kim S-K. Introduction to seaweed polysaccharides. Seaweed polysaccharides. Amsterdam: Elsevier; 2017. p. 1–9.

    Google Scholar 

  13. Tanaka N, Moriguchi H, Sato A, Kawai T, Shimba K, Jimbo Y, Tanaka Y. Microcasting with agarose gel via degassed polydimethylsiloxane molds for repellency-guided cell patterning. RSC Adv. 2016;6(60):54754–62.

    Article  CAS  Google Scholar 

  14. Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, Jia W, Dell’Erba V, Assawes P, Shin SR. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017;45(1):148–63.

    Article  PubMed  Google Scholar 

  15. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30(30):5910–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar MNR. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1–27.

    Article  CAS  Google Scholar 

  17. Katalinich M. Characterization of chitosan films for cell culture applications. PhD Thesis. 2001.

    Google Scholar 

  18. Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharmaceu Sci. 2015;10(1):1.

    CAS  Google Scholar 

  19. Ye K, Felimban R, Traianedes K, Moulton SE, Wallace GG, Chung J, Quigley A, Choong PF, Myers DE. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold. PLoS One. 2014;9(6):e99410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65(4):457–70.

    Article  CAS  PubMed  Google Scholar 

  21. Qi Y, Wang H, Wei K, Yang Y, Zheng R-Y, Kim I, Zhang K-Q. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci. 2017;18(3):237.

    Article  PubMed Central  CAS  Google Scholar 

  22. Ghosh S, Parker ST, Wang X, Kaplan DL, Lewis JA. Direct‐write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater. 2008;18(13):1883–9.

    Article  CAS  Google Scholar 

  23. Cho D-W, Lee H, Han W, Choi Y-J. Bioprinting of liver. 3D bioprinting in regenerative engineering: principles and applications. Boca Raton, FL: CRC Press; 2018.

    Google Scholar 

  24. Sionkowska A, Skrzyński S, Śmiechowski K, Kołodziejczak A. The review of versatile application of collagen. Polym Adv Technol. 2017;28(1):4–9.

    Article  CAS  Google Scholar 

  25. Gorgieva S, Kokol V. Collagen-vs. gelatine-based biomaterials and their biocompatibility: review and perspectives. Biomaterials applications for nanomedicine. Rijeka: IntechOpen; 2011.

    Google Scholar 

  26. Lee JW, Choi Y-J, Yong W-J, Pati F, Shim J-H, Kang KS, Kang I-H, Park J, Cho D-W. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication. 2016;8(1):015007.

    Article  PubMed  CAS  Google Scholar 

  27. Diamantides N, Wang L, Pruiksma T, Siemiatkoski J, Dugopolski C, Shortkroff S, Kennedy S, Bonassar LJ. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Biofabrication. 2017;9(3):034102.

    Article  PubMed  CAS  Google Scholar 

  28. Kim YB, Lee H, Kim GH. Strategy to achieve highly porous/biocompatible macroscale cell blocks, using a collagen/genipin-bioink and an optimal 3D printing process. ACS Appl Mater Interfaces. 2016;8(47):32230–40.

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Ao Q, Tian X, Fan J, Tong H, Hou W, Bai S. Gelatin-based hydrogels for organ 3D bioprinting. Polymers. 2017;9(9):401.

    Article  PubMed Central  CAS  Google Scholar 

  30. Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials. 2014;35(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  31. Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, Zorlutuna P, Vrana NE, Ghaemmaghami AM, Dokmeci MR. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 2014;6(2):024105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Coleman SR, Committee PSEFD. Cross-linked hyaluronic acid fillers. Plast Reconstr Surg. 2006;117(2):661–5.

    Article  CAS  PubMed  Google Scholar 

  33. Khunmanee S, Jeong Y, Park H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tiss Eng. 2017;8:2041731417726464.

    Google Scholar 

  34. Naoum C, Dasiou‐Plakida D. Dermal filler materials and botulin toxin. Int J Dermatol. 2001;40(10):609–21.

    Article  CAS  PubMed  Google Scholar 

  35. Maiz-Fernández S, Pérez-Álvarez L, Ruiz-Rubio L, Pérez González R, Sáez-Martínez V, Ruiz Pérez J, Vilas-Vilela JL. Synthesis and characterization of covalently crosslinked pH-responsive hyaluronic acid nanogels: effect of synthesis parameters. Polymers. 2019;11(4):742.

    Article  PubMed Central  CAS  Google Scholar 

  36. Möller S, Weisser J, Bischoff S, Schnabelrauch M. Dextran and hyaluronan methacrylate based hydrogels as matrices for soft tissue reconstruction. Biomol Eng. 2007;24(5):496–504.

    Article  PubMed  CAS  Google Scholar 

  37. Park JY, Choi J-C, Shim J-H, Lee J-S, Park H, Kim SW, Doh J, Cho D-W. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication. 2014;6(3):035004.

    Article  PubMed  CAS  Google Scholar 

  38. Rajangam T, An SSA. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine. 2013;8:3641.

    PubMed  PubMed Central  Google Scholar 

  39. Xu W, Wang X, Yan Y, Zheng W, Xiong Z, Lin F, Wu R, Zhang R. Rapid prototyping three-dimensional cell/gelatin/fibrinogen constructs for medical regeneration. J Bioact Compat Polym. 2007;22(4):363–77.

    Article  CAS  Google Scholar 

  40. Hoshiba T, Lu H, Kawazoe N, Chen G. Decellularized matrices for tissue engineering. Expert Opin Biol Ther. 2010;10(12):1717–28.

    Article  CAS  PubMed  Google Scholar 

  41. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15:378–86.

    Article  CAS  PubMed  Google Scholar 

  42. Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater. 2010;22(31):3484–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Snyder J, Hamid Q, Wang C, Chang R, Emami K, Wu H, Sun W. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication. 2011;3(3):034112.

    Article  CAS  PubMed  Google Scholar 

  44. Pati F, Jang J, Ha D-H, Kim SW, Rhie J-W, Shim J-H, Kim D-H, Cho D-W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.

    Article  CAS  PubMed  Google Scholar 

  45. Lewis PL, Green RM, Shah RN. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater. 2018;69:63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Poldervaart MT, Goversen B, De Ruijter M, Abbadessa A, Melchels FP, Öner FC, Dhert WJ, Vermonden T, Alblas J. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS One. 2017;12(6):e0177628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;30(31):6221–7.

    Article  CAS  PubMed  Google Scholar 

  48. Guvendiren M, Burdick JA. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr Opin Biotechnol. 2013;24(5):841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Donderwinkel I, Van Hest JC, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem. 2017;8(31):4451–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cho, DW., Kim, B.S., Jang, J., Gao, G., Han, W., Singh, N.K. (2019). Conventional Bioinks. In: 3D Bioprinting. Springer, Cham. https://doi.org/10.1007/978-3-030-32222-9_5

Download citation

Publish with us

Policies and ethics