Skip to main content

Efficient Computational Procedure for the Alternance Method of Optimizing the Temperature Regimes of Structures of Autonomous Objects

  • Chapter
  • First Online:
Cyber-Physical Systems: Industry 4.0 Challenges

Abstract

The method of increasing the efficiency of the computational procedure for determining an optimal control of the temperature field of load-bearing structures of autonomous objects is proposed. Optimization of temperature distributions using controlled heat sources ensures the reduction of the temperature component of the measurement information error, which comes from heat-releasing information measuring systems placed on the structure. As an example, a supporting structure in the form of a rectangular isotropic prism is analyzed. The computational procedure uses a finite element mathematical model of the optimization object in the ANSYS software environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Livshits, M., Derevyanov, M., Kopytin, S.: Distributed control of temperature regimes of structural elements of autonomous objects. Materials of the XIV Minsk International Forum on Heat and Mass Transfer, Minsk, V. 1. Part 1. pp. 719–722. [in Russian] (2012)

    Google Scholar 

  2. Rapoport, E.: Alternance Method in Applied Optimization Problems. Moscow. Nauka, 2000, 335 p. [in Russian] (2000)

    Google Scholar 

  3. Livshitc, M., Sizikov, A.: Multi-criteria optimization of refinery. In: EPJ Web of Conferences. Thermophysical Basis of Energy Technologies 2015. vol. 110. https://doi.org/10.1051/epjconf/201611001035 (2016)

  4. Borodulin, B., Livshits, M.: Optimal control of temperature modes of the instrumental constructions of autonomous objects. In: EPJ Web of Conferences. Volume 110, Thermophysical Basis of Energy Technologies (2016)

    Google Scholar 

  5. Borodulin, B., Livshits M., Korshikov S.: Optimization of temperature distributions in critical cross-sections of load-bearing structures of measurement optical systems of autonomous objects. MATEC Web of Conferences. Volume 92, Thermophysical Basis of Energy Technologies (TBET-2016) Tomsk, Russia, October 26–28 (2016)

    Google Scholar 

  6. Butkovskii, A.: Theory of Optimal Control of Distributed-Parameter Systems. Moscow: Nauka, 1965, 474 p. [in Russian] (1965)

    Google Scholar 

  7. Lions, J.: Control of Distributed Singular Systems. Gauthier-Villars, Paris, 1985. 552 p. (1985)

    Google Scholar 

  8. Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York, London, 1972. xiii + 531 p. (1972)

    Google Scholar 

  9. Di Loreto, M., Damak, S., Eberard, D., Brun, X.: Approximation of linear distributed parameter systems by delay systems. Automatica, pp. 162–68. https://doi.org/10.1016/j.automatica.2016.01.065 (2016)

  10. Felgenhauer, U., Jongen, H.Th., Twilt, F., Weber, G.: Semi-infinite optimization: structure and stability of the feasible set. J. Optim. Theory Appl., 3, 529–452. (1992)

    Google Scholar 

  11. Rapoport, E.Y.: Optimal Control of Distributed-Parameter Systems. Moscow: Vysshaya Shkola, 2009, 677 p. [in Russian] (2009)

    Google Scholar 

  12. Pleshivtseva, Y., Rapoport, E.: Parametric optimization of systems with distributed parameters in problems with mixed constraints on the final states of the object of control. J. Comput. Syst. Sci. Int. 57, 723 (2018). https://doi.org/10.1134/S1064230718050118

    Article  MATH  Google Scholar 

  13. Rapoport, E., Pleshivtseva, Y.: Optimal control of nonlinear objects of engineering thermophysics. Optoelectron. Instrument. Proc. 48, 429 (2012). https://doi.org/10.3103/S8756699012050019

    Article  Google Scholar 

  14. Chichinadze, V.: Solving non-convex nonlinear optimization problems. Nauka, Moscow 1983, 256 p. [in Russian] (1983)

    Google Scholar 

  15. Gill, F., Murray, W., Wright, M.: Practical optimization. Academic Press, New York, 1981. 509 pp. (1981)

    Google Scholar 

  16. Li, R., Liu, W., Ma, H., Tang, T.: Adaptive finite-element approximation for distributed elliptic optimal control problems. SIAM J. Contr. Optim., 4, 1244–1265 (2003)

    Google Scholar 

  17. Murat, F., Tartar, L.: On the control of the coefficients in partial equations. SIAM J. Contr. Optim., 4, 1244–1265 (2003)

    Google Scholar 

  18. Lian, T., Fan, Z., Li, G.: Lagrange optimal controls and time optimal controls for composite fractional relaxation systems. Adv Differ Equ. 1, 233. https://doi.org/10.1186/s13662-017-1299-7. (2017)

  19. Felgenhauer, U.: Structural properties and approximation of optimal controls. Nonlinear Anal. 3, 1869–1880 (2001)

    Article  MathSciNet  Google Scholar 

  20. Buttazzo, G., Kogut, P.: Weak optimal controls in coefficients for linear elliptic problems. Rev. Mat. Complut. 24, 83–94 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Foundation for Basic Research projects No. 17-08-00593.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Yu. Livshits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Livshits, M.Y., Nenashev, A.V., Borodulin, B.B. (2020). Efficient Computational Procedure for the Alternance Method of Optimizing the Temperature Regimes of Structures of Autonomous Objects. In: Kravets, A., Bolshakov, A., Shcherbakov, M. (eds) Cyber-Physical Systems: Industry 4.0 Challenges. Studies in Systems, Decision and Control, vol 260. Springer, Cham. https://doi.org/10.1007/978-3-030-32648-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32648-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32647-0

  • Online ISBN: 978-3-030-32648-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics