Skip to main content

3D Convolutional Long-Short Term Memory Network for Spatiotemporal Modeling of fMRI Data

  • Conference paper
  • First Online:
Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy (MBIA 2019, MFCA 2019)

Abstract

Complex spatiotemporal correlation and dependency embedded in functional magnetic resonance imaging (fMRI) data introduce critical challenges in related analytical methodologies. Despite remarkable successes, most of existing approaches only model spatial or temporal dependency alone and the development of a unified spatiotemporal model is still a challenge. Meanwhile, the recent emergence of deep neural networks has provided powerful models for interpreting complex spatiotemporal data. Here, we proposed a novel convolutional long-short term memory network (3DCLN) for spatiotemporal modeling of fMRI data. The proposed model is designed to decode fMRI volumes belonging to different task events by joint training a 3D convolutional neural network (CNN) for spatial dependency modeling and a long short-term memory (LSTM) network for temporal dependency modeling. We also designed a 3D deconvolution scheme for fMRI sequence reconstruction to inspect the feature learning process in the 3DCLN. The experimental results on the motor task-fMRI data from Human Connectome Project (HCP) showed that fMRI volumes can be decoded with a relatively high accuracy (76.38%). More importantly, the proposed 3DCLN can dramatically remove noises and highlights signals of interest in the reconstructed fMRI sequence and hence improve the performance of activation detection, validating the spatiotemporal feature learning in the proposed 3DCLN model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453(7197), 869–878 (2008)

    Article  Google Scholar 

  2. Friston, K.J.: Transients, metastability, and neuronal dynamics. NeuroImage 5, 164–171 (1997)

    Article  Google Scholar 

  3. Hjelm, R.D., Calhoun, V.D., Salakhutdinov, R., Allen, E.A., Adali, T., Plis, S.M.: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks. NeuroImage 96(8), 245–260 (2014)

    Article  Google Scholar 

  4. Hu, X., et al.: Latent source mining in FMRI via restricted Boltzmann machine. Hum. Brain Mapp. 39(6), 2368–2380 (2018)

    Article  Google Scholar 

  5. Xia, W., Wen, X., Li, J., Li, Y.: A new dynamic Bayesian network approach for determining effective connectivity from fMRI data. Neural Comput. Appl. 24(1), 91–97 (2014)

    Article  Google Scholar 

  6. Graves, A.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Wang, H., et al.: Recognizing brain states using deep sparse recurrent neural network. IEEE Trans. Med. Imag. 34, 1058–1068 (2018)

    Google Scholar 

  8. Huang, S., Li, X., Zhang, Z., Wu, F., Han, J.: User-ranking video summarization with multi-stage spatio-temporal representation. IEEE Trans. Image Process. PP(99), 1 (2018)

    Google Scholar 

  9. Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. NeuroImage 80(8), 169–189 (2013)

    Article  Google Scholar 

  10. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., et al.: The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013)

    Article  Google Scholar 

  11. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  12. Zeiler, Matthew D., Fergus, R.: Visualizing and Understanding Convolutional Networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  13. Huang, H., Hu, X., Zhao, Y., et al.: Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans. Med. Imag. 37(7), 1551–1561 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xintao Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suo, W. et al. (2019). 3D Convolutional Long-Short Term Memory Network for Spatiotemporal Modeling of fMRI Data. In: Zhu, D., et al. Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy. MBIA MFCA 2019 2019. Lecture Notes in Computer Science(), vol 11846. Springer, Cham. https://doi.org/10.1007/978-3-030-33226-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33226-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33225-9

  • Online ISBN: 978-3-030-33226-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics