Skip to main content

Inference of Transition Probabilities in Multi-State Models Using Adaptive Inverse Probability Censoring Weighting Technique

  • Chapter
  • First Online:
Statistical Modeling in Biomedical Research

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

  • 1124 Accesses

Abstract

Inverse probability censoring weighting (IPCW) technique is often used to adjust for right censoring or recover information for censored individuals in survival analysis and in multi-state modeling. A simple IPCW (SIPCW) technique which does not consider the intermediate states, has been proposed for analyzing multi-state data. However, our simulation studies show that the SIPCW technique may lead to biased estimates when being applied in complex multi-state models. We thereby propose a model-specific, state-dependent adaptive IPCW (AIPCW) technique for estimating transition probabilities in multi-state models. Intensive simulation results verified that the proposed AIPCW technique improves the accuracy of transition probability estimates compared to the SIPCW technique and leads to asymptotic unbiased estimates. We applied the proposed technique to a real-world hematopoietic stem cell transplant (HSCT) data to assess the acute and chronic graft-versus-host disease (GVHD) effects on disease relapse rates and mortality rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aalen, O. (1978). Nonparametric inference for a family of counting processes. The Annals of Statistics, 6, 701–726.

    Article  MathSciNet  Google Scholar 

  2. Aalen, O., & Johansen, S. (1978). An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scandinavian Journal of Statistics, 5, 141–150.

    MathSciNet  MATH  Google Scholar 

  3. Andersen, P. K., Borgan, O., Gill, R. D., & Keiding, N. (1993). Statistical models based on counting processes. New York: NY Springer.

    Book  Google Scholar 

  4. Bie, O., Borgan, Ø., & Liestøl, K. (1987). Confidence intervals and confidence bands for the cumulative hazard rate function and their small sample properties. Scandinavian Journal of Statistics, 14, 221–233.

    MathSciNet  MATH  Google Scholar 

  5. Borgan, Ø., & Liestøl, K. (1990). A note on confidence intervals and bands for the survival function based on transformations. Scandinavian Journal of Statistics, 17, 35–41.

    MathSciNet  Google Scholar 

  6. Datta, S., & Satten, G. A. (2001). Validity of the Aalen–Johansen estimators of stage occupation probabilities and Nelson–Aalen estimators of integrated transition hazards for non-Markov models. Statistics & Probability Letters, 55(4), 403–411.

    Article  MathSciNet  Google Scholar 

  7. Datta, S., & Satten, G. A. (2002). Estimation of integrated transition hazards and stage occupation probabilities for non-Markov system under stage dependent censoring. Biometrics, 58, 792–802.

    Article  MathSciNet  Google Scholar 

  8. Fine, J. P., & Gray, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association, 94(446), 496–509.

    Article  MathSciNet  Google Scholar 

  9. He, P., Eriksson, F., Scheike, T. H., & Zhang, M.-J. (2015). A proportional hazards regression model for the subdistribution with covariates-adjusted censoring weight for competing risks data. Scandinavian Journal of Statistics, 43, 103–122.

    Article  MathSciNet  Google Scholar 

  10. Klein, J. P., Szydlo, R. M., Craddock, C., & Goldman, J. M. (2000). Estimation of current leukaemia-free survival following donor lymphocyte infusion therapy for patients with leukaemia who relapse after allografting: Application of a multistate model. Statistics in Medicine, 19(21), 3005–3016.

    Article  Google Scholar 

  11. Luger, S. M., Ringdén, O., Zhang, M.-J., Pérez, W. S., Bishop, M. R., Bornhauser, M., et al. (2012). Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transplantation, 47(2), 203–211.

    Article  Google Scholar 

  12. Nelson, W. (1969). Hazard plotting for incomplete failure data. Journal of Quality Technology, 1(1), 27–52.

    Article  Google Scholar 

  13. Nelson, W. (1972). Theory and applications of hazard plotting for censored failure data. Technometrics, 14(4), 945–966.

    Article  Google Scholar 

  14. Robins, J. M., & Rotnitzky, A. (1992). Recovery of information and adjustment for dependent censoring using surrogate markers. In AIDS epidemiology (pp. 297–331). Boston: Birkhäuser.

    Chapter  Google Scholar 

  15. Scheike, T., & Zhang, M. J. (2007). Direct modelling of regression effects for transition probabilities in multistate models. Scandinavian Journal of Statistics, 34(1), 17–32.

    Article  MathSciNet  Google Scholar 

  16. Scheike, T. H., Zhang, M. J., & Gerds, T. A. (2008). Predicting cumulative incidence probability by direct binomial regression. Biometrika, 95(1), 205–220.

    Article  MathSciNet  Google Scholar 

  17. Zhang, X., Zhang, M. J., & Fine, J. P. (2009). A mass redistribution algorithm for right-censored and left-truncated time to event data. Journal of Statistical Planning and Inference, 139(9), 3329–3339.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Large sample property of IPCW-based estimator has been studied extensively [8, 9, 16]. We present a brief derivation for the variance estimations. Let \(T_{i,123}=(T_{i,123}^\ast \wedge C_i)\), \(N_i^{C_{00}}(t)=I(T_{i,123} \le t, \varDelta _{C_{00},i}=1)\), \(Y_i^{C_{00}}(t)=I(T_{i,123}\ge t)\), and \(Y_{\bullet }^{C_{00}}(t)=\sum _i Y_i^{C_{00}}(t)\). Under regularity condition [9], we have that

$$\displaystyle \begin{aligned} \widehat G_{C_{00}}(T_{i,k}^\ast \wedge t) - G_{C_{00}}(T_{i,k}^\ast \wedge t) &\approx_p - \widehat G_{C_{00}}(T_{i,k}^\ast \wedge t) \sum_{j=1}^n \int_0^{T_{i,k}^\ast \wedge t} \frac{d\widehat{M}_j^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)}\\ d\widehat{M}_j^{C_{00}}(t)&=dN_j^{C_{00}}(t) - Y_j^{C_{00}}(t)d\widehat{\varLambda}_{C_{00}}(t)\\ d\widehat{\varLambda}_{C_{00}}(t)&=\sum_j \frac{dN_j^{C_{00}}(t)}{Y_{\bullet}^{C_{00}}(t)} \end{aligned} $$

Thus, variance of \(\left \{\widehat P_{0k}^{\mathrm {AIPCW}}(0,t) - P_{0k}(0,t)\right \}\), for k = 0, 1, 2, can be estimated by

$$\displaystyle \begin{aligned} \widehat{\varSigma}_{P_{0k}}(t)=\frac{1}{n^2}\sum_{i=1}^n \left \{\widehat{W}_{i,0k}(t)\right \}^2, {} \end{aligned} $$
(4)

where

$$\displaystyle \begin{aligned} \widehat{W}_{i,00}(t)&=\left \{\frac{R_{i,0}(t)}{\widehat G_{C_{00}}(t)} - \widehat P_{00}^{\mathrm{AIPCW}}(0,t)\right \} +\left \{\sum_{j=1}^n \frac{R_{j,0}(t)}{\widehat G_{C_{00}}(t)}\right \} \int_0^t \frac{d\widehat M_i^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)}\\ \widehat{W}_{i,0k}(t) &=\left \{\frac{R_{i,k}(t)}{\widehat G_{C_{00}}(T_{i,k}^\ast)} - \widehat P_{0k}^{\mathrm{AIPCW}}(0,t)\right \}\\ &\quad +\int_0^t \left \{\sum_{j=1}^n \frac{R_{j,k}(t)}{\widehat G_{C_{00}}(T_{j,k}^\ast)} I\{u \le T_{j,k}^\ast \le t\}\right \} \frac{d\widehat M_i^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)} \mbox{ , for }k=1,2. \end{aligned} $$

For the variance of \(P_{03}^{\mathrm {AIPCW}}(0,t)\), since

$$\displaystyle \begin{aligned} & \sqrt{n}\left \{\widehat{P}_{03}^{\mathrm{AIPCW}}(0,t)- P_{03}(0,t) \right \} \\[.2cm] &=\frac{1}{\sqrt n}\sum_{i=1}^n \left \{\frac{R_{i,3}(t)}{G_{C_{00}}(T_{i,3}^\ast) G_{C_{33}}(t)}-P_{03}(0,t)\right \}\\ &+ \frac{1}{\sqrt n}\sum_{i=1}^n \frac{R_{i,3}(t)}{\widehat G_{C_{33}}(t)} \left \{\frac{1}{\widehat{G}_{C_{00}}(T_{i,3}^\ast)} - \frac{1}{G_{C_{00}}(T_{i,3}^\ast)}\right \}\\ &+ \frac{1}{\sqrt n}\sum_{i=1}^n \frac{R_{i,3}(t)}{G_{C_{00}}(T_{i,3}^\ast)} \left \{\frac{1}{\widehat{G}_{C_{33}}(t)} - \frac{1}{G_{C_{33}}(t)}\right \}\\ &\approx_p \frac{1}{\sqrt n}\sum_{i=1}^n \left \{\frac{R_{i,3}(t)}{G_{C_{00}}(T_{i,3}^\ast) G_{C_{33}}(t)}-P_{03}(0,t)\right \}\\ &+\frac{1}{\sqrt n}\sum_{i=1}^n \int_0^t \left \{\sum_{j=1}^n \frac{R_{j,3}(t)}{G_{C_{00}}(T_{j,3}^\ast) G_{C_{33}}(t)} I\{u \le T_{j,3}^\ast \le t\}\right \} \frac{dM_i^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)}\\ &+\frac{1}{\sqrt n}\sum_{i=1}^n \left \{\sum_{j=1}^n \frac{R_{j,3}(t)}{G_{C_{00}}(T_{j,3}^\ast) G_{C_{33}}(t)} \right \} \int_0^t \frac{d M_i^{C_{33}}(u)}{Y_{\bullet}^{C_{33}}(u)}, \end{aligned} $$

where \(M_i^{C_{33}}(u)\) can be estimated by

$$\displaystyle \begin{aligned} d\widehat{M}_i^{C_{33}}(u)&=dN_{i}^{C_{33}}(u) - Y_i^{C_{33}}(u) d\widehat \varLambda^{C_{33}}(u)\\ d\widehat{\varLambda}^{C_{33}}(u)&=\sum_j \frac{d N_{j}^{C_{33}}(u)}{Y_{\bullet}^{C_{33}}(u)}. \end{aligned} $$

Then, variance of \(\left \{ \widehat {P}_{03}^{\mathrm {AIPCW}}(0,t)- P_{03}(0,t) \right \}\) can be estimated by

$$\displaystyle \begin{aligned} \begin{array}{rcl} \widehat{\varSigma}_{P_{03}}(t)=\frac{1}{n^2}\sum_{i=1}^n \left\{\widehat{W}_{i,03}(t)\right \}^2,{} \end{array} \end{aligned} $$
(5)

where

$$\displaystyle \begin{aligned} \widehat{W}_{i,03}(t)&= \left\{\frac{R_{i,3}(t)}{\widehat G_{C_{00}}(T_{i,3}^\ast) \widehat G_{C_{33}}(t)}- \widehat P_{03}^{\mathrm{AIPCW}}(0,t)\right \}\\ &+\int_0^t \left\{\sum_{j=1}^n \frac{R_{j,3}(t)}{\widehat G_{C_{00}}(T_{j,3}^\ast) \widehat G_{C_{33}}(t)} I\{u \le T_{j,3}^\ast \le t\}\right \} \frac{d\widehat M_i^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)}\\ &+\left\{\sum_{j=1}^n \frac{R_{j,3}(t)}{\widehat G_{C_{00}}(T_{j,3}^\ast) \widehat G_{C_{33}}(t)} \right \} \int_0^t \frac{d \widehat M_i^{C_{33}}(u)}{Y_{\bullet}^{C_{33}}(u)}. \end{aligned} $$

Similarly for k = 4, 5, variance of \(\left \{\widehat {P}_{0k}^{\mathrm {AIPCW}}(0,t)- P_{0k}(0,t) \right \}\) can be estimated by

$$\displaystyle \begin{aligned} \begin{array}{rcl} {} \widehat{\varSigma}_{P_{0k}}(t)=\frac{1}{n^2}\sum_{i=1}^n \left \{\widehat{W}_{i,0k}(t)\right \}^2, \end{array} \end{aligned} $$
(6)

where

$$\displaystyle \begin{aligned} \widehat{W}_{i,0k}(t)&= \left \{\frac{R_{i,k}(t)}{\widehat G_{C_{00}}(T_{i,3}^\ast) \widehat G_{C_{33}}(T_{i,45}^\ast)}- \widehat P_{0k}^{\mathrm{AIPCW}}(0,t)\right \}\\ &+\int_0^t \left \{\sum_{j=1}^n \frac{R_{j,k}(t)}{\widehat G_{C_{00}}(T_{j,3}^\ast) \widehat G_{C_{33}}(T_{j,45}^\ast)} I\{u \le T_{j,3}^\ast \le t\}\right \}\frac{d\widehat M_i^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)}\\ &+\int_0^t \left \{\sum_{j=1}^n \frac{R_{j,k}(t)}{\widehat G_{C_{00}}(T_{j,3}^\ast) \widehat G_{C_{33}}(T_{j,45}^\ast)} I\{u \le T_{j,45}^\ast \le t\}\right \} \frac{d\widehat M_i^{C_{33}}(u)}{Y_{\bullet}^{C_{33}}(u)}. \end{aligned} $$

The derived moment-type variance estimates have two parts. For example, there are two parts in \(\widehat {W}_{i,00}(t)=\widehat {W}_{i1,00}(t)+\widehat {W}_{i2,00}(t) \) for estimating variance of \(P_{00}^{\mathrm {AIPCW}}(0,t)\). The second part

$$\displaystyle \begin{aligned} \widehat{W}_{i2,00}(t)=\left \{\sum_{j=1}^n \frac{R_{j,0}(t)}{\widehat G_{C_{00}}(t)}\right \}\int_0^t \frac{d\widehat M_i^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)}\end{aligned} $$
(7)

is needed due to the estimation of the censoring distributions. In other words, when the censoring distributions are known, \(\widehat {W}_{i2,00}(t)\) becomes zero, and \(\widehat {W}_{i,00}(t)\) reduces to

$$\displaystyle \begin{aligned} \widehat{W}_{i1,00}(t)=\left \{\frac{R_{i,0}(t)}{\widehat G_{C_{00}}(t)} - \widehat P_{00}^{\mathrm{AIPCW}}(0,t)\right \}.\end{aligned} $$
(8)

In most situations, \(\widehat {W}_{i2,00}(t)\) is negligible. The variance estimates estimated from \(\widehat {W}_{i,00}(t)\) are close to that estimated from \(\widehat {W}_{i1,00}(t)\) alone, but not necessarily larger, because the covariance of W i1,00(t) and W i2,00(t) are not necessarily positive. Similar arguments are true for the variances of transition probabilities to other states. We presented both variance estimates in the simulation studies.

Appendix 2

For a four-level twelve-state model, we here only present the variance estimates of P 09(t), P 0,10(t), P 0,11(t), one can refer to Appendix 1 for the variance of other transition probabilities. We have

$$\displaystyle \begin{aligned} &\sqrt{n}\left\{\widehat{P}_{09}^{\mathrm{AIPCW}}(0,t) - P_{09}(0,t) \right\}\\ &=\frac{1}{\sqrt n}\sum_{i=1}^n \left\{\frac{R_{i,39}(t)}{\widehat G_{C_{00}}(T_{i,3}^\ast) \widehat G_{C_{33}}(T_{i,9}^\ast) \widehat G_{C_{99,3}}(t)}+\frac{R_{i,49}(t)}{\widehat G_{C_{00}}(T_{i,4}^\ast) \widehat G_{C_{44}}(T_{i,9}^\ast)\widehat G_{C_{99,4}}(t)}\right.\\ &\qquad \left. -P_{09}(0,t) \right\}\\ &=\frac{1}{\sqrt n}\sum_{i=1}^n \left\{\frac{R_{i,39}(t)}{G_{C_{00}}(T_{i,3}^\ast)G_{C_{33}}(T_{i,9}^\ast)G_{C_{99,3}}(t)}+\frac{R_{i,49}(t)}{G_{C_{00}}(T_{i,4}^\ast) G_{C_{44}}(T_{i,9}^\ast)G_{C_{99,4}}(t)}\right.\\ &\qquad \left.-P_{09}(0,t) \right\}\\ &+\frac{1}{\sqrt n}\sum_{i=1}^n \left\{\frac{R_{i,39}(t)}{\widehat G_{C_{00}}(T_{i,3}^\ast) \widehat G_{C_{33}}(T_{i,9}^\ast) \widehat G_{C_{99,3}}(t)}-\frac{R_{i,39}(t)}{G_{C_{00}}(T_{i,3}^\ast) G_{C_{33}}(T_{i,9}^\ast) G_{C_{99,3}}(t)} \right\}\\ & +\frac{1}{\sqrt n}\sum_{i=1}^n\left\{\frac{R_{i,49}(t)}{\widehat G_{C_{00}}(T_{i,4}^\ast) \widehat G_{C_{44}}(T_{i,9}^\ast)\widehat G_{C_{99,4}}(t)}-\frac{R_{i,49}(t)}{G_{C_{00}}(T_{i,4}^\ast) G_{C_{44}}(T_{i,9}^\ast) G_{C_{99,4}}(t)} \right\}\\ &\approx_p\frac{1}{\sqrt n}\sum_{i=1}^n\left\{\frac{R_{i,39}(t)}{G_{C_{00}}(T_{i,3}^\ast)G_{C_{33}}(T_{i,9}^\ast)G_{C_{99,3}}(t)} + \frac{R_{i,49}(t)}{G_{C_{00}}(T_{i,4}^\ast)G_{C_{44}}(T_{i,9}^\ast)G_{C_{99,4}}(t)}\right.\\ &\left.\qquad -P_{09}(0,t) \right\}\\ &+\frac{1}{\sqrt n}\sum_{i=1}^n \int_0^t \left\{ \sum_{j=1}^n \frac{R_{j,39}(t)}{G_{C_{00}}(T_{j,3}^\ast)G_{C_{33}}(T_{j,9}^\ast)G_{C_{99,3}}(t)} I\{u \leq T_{j,3}^\ast \leq t\} \right\} \frac{dM_i^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)}\\ &+\frac{1}{\sqrt n}\sum_{i=1}^n \int_0^t \left\{ \sum_{j=1}^n \frac{R_{j,39}(t)}{G_{C_{00}}(T_{j,3}^\ast)G_{C_{33}}(T_{j,9}^\ast)G_{C_{99,3}}(t)} I\{u \leq T_{j,9}^\ast \leq t, \eta_{j,3}=1\} \right\} \\ &\qquad \frac{dM_i^{C_{33}}(u)}{Y_{\bullet}^{C_{33}}(u)}\\ &+\frac{1}{\sqrt n}\sum_{i=1}^n \left\{ \sum_{j=1}^n \frac{R_{j,39}(t)}{G_{C_{00}}(T_{j,3}^\ast)G_{C_{33}}(T_{j,9}^\ast)G_{C_{99,3}}(t)} I\{u \leq T_{j,9}^\ast \leq t, \eta_{j,3}=1\} \right\}\\ &\qquad \int_0^t\frac{dM_i^{C_{99,3}}(u)}{Y_{\bullet}^{C_{99,3}}(u)}\\[.2cm] &+\frac{1}{\sqrt n}\sum_{i=1}^n \int_0^t \left\{ \sum_{j=1}^n \frac{R_{j,49}(t)}{G_{C_{00}}(T_{j,4}^\ast)G_{C_{44}}(T_{j,9}^\ast)G_{C_{99,4}}(t)} I\{u \leq T_{j,4}^\ast \leq t\} \right\}\\ &\qquad \frac{dM_i^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)}\\ &+\frac{1}{\sqrt n}\sum_{i=1}^n \int_0^t \left\{ \sum_{j=1}^n \frac{R_{j,49}(t)}{G_{C_{00}}(T_{j,4}^\ast)G_{C_{44}}(T_{j,9}^\ast)G_{C_{99,4}}(t)} I\{u \leq T_{j,9}^\ast \leq t, \eta_{j,4}=1\} \right\} \\ &\qquad \frac{dM_i^{C_{44}}(u)}{Y_{\bullet}^{C_{44}}(u)}\\ &+\frac{1}{\sqrt n}\sum_{i=1}^n \left\{ \sum_{j=1}^n \frac{R_{j,49}(t)}{G_{C_{00}}(T_{j,4}^\ast)G_{C_{44}}(T_{j,9}^\ast)G_{C_{99,4}}(t)} I\{u \leq T_{j,9}^\ast \leq t, \eta_{j,4}=1\} \right\}\\ &\qquad \int_0^t \frac{dM_i^{C_{99,4}}(u)}{Y_{\bullet}^{C_{99,4}}(u)}, \end{aligned} $$

where \(M_i^{C_{99,s}}(u)\), for s = 3, 4 can be estimated by

$$\displaystyle \begin{aligned} d\widehat{M}_i^{C_{99,s}}(u) &=dN_i^{C_{99,s}}(u) - Y_i^{C_{99,s}}(u) d\widehat{\varLambda}^{C_{99,s}}(u)\\[.2cm] d\widehat{\varLambda}^{C_{99,s}}(u)&=\frac{d N_{\bullet}^{C_{99,s}}(u)}{Y_{\bullet}^{C_{99,s}}(u)}. \end{aligned} $$

Thus, the variance of \(\sqrt {n}\left \{\widehat {P}_{09}^{\mathrm {AIPCW}}(0,t)- P_{09}(0,t) \right \}\) can be estimated by

$$\displaystyle \begin{aligned} \begin{aligned} \widehat{\varSigma}_{P_{09}}(t)=\frac{1}{n}\sum_{i=1}^n \left\{\widehat{W}_{i,09}(t)\right\}^2, \end{aligned} \end{aligned} $$
(9)

where

$$\displaystyle \begin{aligned} \widehat{W}_{i,09}(t)&=\left\{\frac{R_{i,39}(t)}{\widehat G_{C_{00}}(T_{i,3}^\ast)\widehat G_{C_{33}}(T_{i,9}^\ast)\widehat G_{C_{99,3}}(t)} +\frac{R_{i,49}(t)}{\widehat G_{C_{00}}(T_{i,4}^\ast)\widehat G_{C_{44}}(T_{i,9}^\ast)\widehat G_{C_{99,4}}(t)}\right.\\ &\qquad \left. -\widehat P_{09}^{\mathrm{AIPCW}}(0,t) \right\}\\ &+\int_0^t\left\{ \sum_{j=1}^n \frac{R_{j,39}(t)}{\widehat G_{C_{00}}(T_{j,3}^\ast)\widehat G_{C_{33}}(T_{j,9}^\ast) \widehat G_{C_{99,3}}(t)} I\{u \leq T_{j,3}^\ast \leq t\} \right\} \frac{d\widehat{M}_i^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)}\\ &+\int_0^t\left\{\sum_{j=1}^n \frac{R_{j,39}(t)}{\widehat G_{C_{00}}(T_{j,3}^\ast)\widehat G_{C_{33}}(T_{j,9}^\ast)\widehat G_{C_{99,3}}(t)} I\{u \leq T_{j,9}^\ast \leq t, \eta_{j,3}=1\} \right\}\\ &\qquad \frac{d\widehat M_i^{C_{33}}(u)}{Y_{\bullet}^{C_{33}}(u)}\\ &+\left\{\sum_{j=1}^n\frac{R_{j,39}(t)}{\widehat G_{C_{00}}(T_{j,3}^\ast)\widehat G_{C_{33}}(T_{j,9}^\ast) \widehat G_{C_{99,3}}(t)} I\{u \leq T_{j,9}^\ast \leq t, \eta_{j,3}=1\} \right\}\\ &\qquad \int_0^t\frac{d\widehat M_i^{C_{99,3}}(u)}{Y_{\bullet}^{C_{99,3}}(u)}\\ &+\int_0^t \left\{ \sum_{j=1}^n \frac{R_{j,49}(t)}{\widehat G_{C_{00}}(T_{j,4}^\ast)\widehat G_{C_{44}}(T_{j,9}^\ast)\widehat G_{C_{99,4}}(t)} I\{u \leq T_{j,4}^\ast \leq t\} \right\}\\ & \qquad \frac{d\widehat M_i^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)}\\ &+ \int_0^t \left\{ \sum_{j=1}^n \frac{R_{j,49}(t)}{\widehat G_{C_{00}}(T_{j,4}^\ast)\widehat G_{C_{44}}(T_{j,9}^\ast)\widehat G_{C_{99,4}}(t)} I\{u \leq T_{j,9}^\ast \leq t, \eta_{j,4}=1\} \right\}\\ &\qquad \frac{d\widehat M_i^{C_{44}}(u)}{Y_{\bullet}^{C_{44}}(u)}\\ &+\left\{\sum_{j=1}^n\frac{R_{j,49}(t)}{\widehat G_{C_{00}}(T_{j,4}^\ast)\widehat G_{C_{44}}(T_{j,9}^\ast)\widehat G_{C_{99,4}}(t)} I\{u \leq T_{j,9}^\ast \leq t, \eta_{j,4}=1\} \right\}\\ &\qquad \int_0^t\frac{d\widehat M_i^{C_{99,4}}(u)}{Y_{\bullet}^{C_{99,4}}(u)} \end{aligned} $$

Similarly, for k = 10, 11, the variance of \(\sqrt {n}\left \{\widehat {P}_{0k}^{\mathrm {AIPCW}}(0,t)- P_{0k}(0,t) \right \}\) can be estimated by:

$$\displaystyle \begin{aligned} \widehat{\varSigma}_{P_{0k}}(t)=\frac{1}{n}\sum_{i=1}^n \left\{\widehat{W}_{i,0k}(t)\right\}^2. {} \end{aligned}$$

where

$$\displaystyle \begin{aligned} \widehat{W}_{i,0k}(t)&=\left\{\frac{R_{i,3k}(t)}{\widehat G_{C_{00}}(T_{i,3}^\ast)\widehat G_{C_{33}}(T_{i,9}^\ast) \widehat G_{C_{99,3}}(T_{i,L_4}^\ast)} \right.\\ &\qquad \left.+ \frac{R_{i,4k}(t)}{\widehat G_{C_{00}}(T_{i,4}^\ast)\widehat G_{C_{44}}(T_{i,9}^\ast)\widehat G_{C_{99,4}}(T_{i,L_4}^\ast)} - \widehat P_{0k}^{\mathrm{AIPCW}}(0,t) \right\}\\ &+\int_0^t\left\{ \sum_{j=1}^n \frac{R_{j,3k}(t)}{\widehat G_{C_{00}}(T_{j,3}^\ast)\widehat G_{C_{33}}(T_{j,9}^\ast) \widehat G_{C_{99,3}}(T_{j,L_4}^\ast)} I\{u \leq T_{j,3}^\ast \leq t\} \right\}\\ &\qquad \frac{d\widehat M_i^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)}\\ &+\int_0^t\left\{ \sum_{j=1}^n \frac{R_{j,3k}(t)}{\widehat G_{C_{00}}(T_{j,3}^\ast)\widehat G_{C_{33}}(T_{j,9}^\ast) \widehat G_{C_{99,4}}(T_{j,L_4}^\ast)} I\{u \leq T_{j,9}^\ast \leq t, \eta_{j,3}=1\} \right\}\\ &\qquad \frac{d\widehat M_i^{C_{33}}(u)}{Y_{\bullet}^{C_{33}}(u)}\\ &+\int_0^t\left\{\sum_{j=1}^n\frac{R_{j,3k}(t)}{\widehat G_{C_{00}}(T_{j,3}^\ast)\widehat G_{C_{33}}(T_{j,9}^\ast) \widehat G_{C_{99,3}}(T_{j,L_4}^\ast)}I\{u \leq T_{j,L_4}^\ast \leq t, \eta_{j,3}=1\}\right\}\\ &\qquad \frac{d\widehat M_i^{C_{99,3}}(u)}{Y_{\bullet}^{C_{99,3}}(u)}\\ &+\int_0^t\left\{ \sum_{j=1}^n \frac{R_{j,4k}(t)}{\widehat G_{C_{00}}(T_{j,4}^\ast)\widehat G_{C_{44}}(T_{j,9}^\ast) \widehat G_{C_{99,4}}(T_{j,L_4}^\ast)} I\{u \leq T_{j,4}^\ast \leq t\} \right\}\\ &\qquad \frac{d\widehat M_i^{C_{00}}(u)}{Y_{\bullet}^{C_{00}}(u)}\\[.2cm] &+\int_0^t\left\{ \sum_{j=1}^n \frac{R_{j,4k}(t)}{\widehat G_{C_{00}}(T_{j,4}^\ast)\widehat G_{C_{44}}(T_{ij,9}^\ast) \widehat G_{C_{99,4}}(T_{j,L_4}^\ast)} I\{u \leq T_{j,9}^\ast \leq t, \eta_{j,4}=1\} \right\}\\ &\qquad \frac{d\widehat M_i^{C_{44}}(u)}{Y_{\bullet}^{C_{44}}(u)}\\ &+\int_0^t\left\{\sum_{j=1}^n\frac{R_{j,4k}(t)}{\widehat G_{C_{00}}(T_{j,4}^\ast)\widehat G_{C_{44}}(T_{j,9}^\ast) \widehat G_{C_{99,4}}(T_{j,L_4}^\ast)} I\{u \leq T_{j,L_4}^\ast \leq t, \eta_{j,4}=1\}\right\}\\ &\qquad \frac{d\widehat M_i^{C_{99,4}}(u)}{Y_{\bullet}^{C_{99,4}}(u)}. \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Zhang, MJ. (2020). Inference of Transition Probabilities in Multi-State Models Using Adaptive Inverse Probability Censoring Weighting Technique. In: Zhao, Y., Chen, DG. (eds) Statistical Modeling in Biomedical Research. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-33416-1_19

Download citation

Publish with us

Policies and ethics