Skip to main content

Dual Band Microstrip Patch Ultra-wide Band Antenna for LTE Wireless Applications

  • Conference paper
  • First Online:
Intelligent Data Communication Technologies and Internet of Things (ICICI 2019)

Abstract

A Multi slot dual band with an ultra-wide band ‘T’ and ‘G’ slots shaped Micro-strip UWB Patch Antenna proposed has been discussed in this paper. The sizes of length & widths of the uwb-patch has been chosen and varied in such a manner that it occupies compact volume of 32 × 28 × 1.7 (1523 mm3) and it is designed on a substrate FR4-epoxy having a dielectric constant of εr = 4.4. The antenna is capable to operate in dual band with second band being a wide band ranging from 3.59 GHz to 10 GHz. The first band operates in 2.32 GHz–2.48 GHz range and is obtained by slot size variations in the ‘TG’ slot geometry. The advantages of the proposed ‘T’ and ‘G’ shaped slots design is that of the two band obtained, one ultra-wide band frequency range of operation can be achieved without the slots size variations using the same specifications or dimensions thus overcoming the need for extra enhancement of the surface area while designing the antenna. TG shaped Antenna is covering applications from ISM 2.4 WLAN Band, LTE band No 40 and wide band wireless applications in 5.2/5.8 GHz ISM WLAN, Radio altimeters (4.2 GHz) and Wimax (3.5/5.55 GHz). Direct probe feeding method using a 50 Ω micro-strip line has been used with the width 3 mm for the micro-strip line. The Coupling between the two slots plays a better role for obtaining the wider bandwidth. The analysis of the parameters such as directivity, bandwidth, return loss (dB), gain and VSWR (Voltage Standing Wave Ratio) of the Microstrip patch antenna with ‘T’ & ‘G’ slot has been performed using HFSS v15 [24] tool. The obtained return losses (RL) and the radiations patterns are found to be suitable for the LTE operations and moderately omnidirectional in nature. With the variation in the length (L) and width (W) in the ‘T’ & ‘G’ slots shaped geometry, the performance of uwb patch antenna has been studied with the comparisons of the simulated results in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, G., Ray, K.P.: Broadband Microstrip Antennas, pp. 18–23. Artech House, Boston (2003)

    Google Scholar 

  2. Pozar, D.M., Schaubert, D.H.: Microstrip Antennas. IEEE Press, New York (1995). https://doi.org/10.1109/9780470545270

    Book  Google Scholar 

  3. Deepthi Chamkur, V., Byrareddy, C.R.: 4G shaped wide band patch antenna for wireless applications. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES) (2018). https://doi.org/10.1109/CESYS.2018.8723907

  4. Abutarboush, H.F., etal.: A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices. IEEE Trans. Antennas Propag. 60(1) (2012). https://doi.org/10.1109/TAP.2011.2167925

    Article  Google Scholar 

  5. Zhang, X.Y., Zhang, Y., Pan, Y.-M., Duan, W.: Low-profile dual-band filtering patch antenna and its application to LTE MIMO system. IEEE Trans. Antennas Propag. 65(1) (2017). https://doi.org/10.1109/TAP.2016.2631218

    Article  Google Scholar 

  6. Wang, H., Huang, X.B., Fang, D.G.: A single layer wideband U-slot microstrip patch antenna array. IEEE Antennas Wirel. Propag. Lett. 7, 9–12 (2008). https://doi.org/10.1109/LAWP.2007.914122

    Article  Google Scholar 

  7. Laila, D., Sujith, R., Nijas, C.M., Anandan, C.K., Vasudevan, K., Mohanan, P.: Modified CPW fed monopole antenna with suitable radiation pattern for mobile handset. Microwave Rev. (2011). https://doi.org/10.1109/ICCSP.2011.5739340

  8. Abutarboush, H.F., Nilavalan, R., Cheung, S.W., Nasr, K.M., Peter, T., Budimir, D., Al-Raweshidy, H.: A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices. IEEE Trans. Antennas Propag. (2012). https://doi.org/10.1109/TAP.2011.2167925

    Article  Google Scholar 

  9. Nithya, D., Chitra, M.P.: Performance analysis of filtering antennas. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (2017). https://doi.org/10.1109/WiSPNET.2017.8299711

  10. Guo, Y.-X., Khoo, K.-W., Ong, L.C.: Wideband dual-polarized patch antenna with broadband baluns. IEEE Trans. Antennas Propag. 55(1), 78–83 (2007). https://doi.org/10.1109/TAP.2006.888398

    Article  Google Scholar 

  11. Gosh, S.: Ultra wideband planar crossed monopole Antenna as EMI Sensor. Int. J. Microwave Opt. Technol. 7(4), 247–254 (2012)

    Google Scholar 

  12. Ban, Y.-L., Chen, J.-H., Ying, L.-J., Li, J.L.-W.: Ultrawideband antenna for LTE/GSM/UMTS wireless USB dongle applications. IEEE Antennas Wırel. Propag. Lett. 11, 403–406 (2012). https://doi.org/10.1109/LAWP.2012.2192470

    Article  Google Scholar 

  13. Garg, R., Bhartia, P., Bahl, I., Ittipiboon, A.: Microstrip Antenna Design Handbook. Artech House, Boston (2001)

    Google Scholar 

  14. Oppermann, I., Hamalainen, M., Inatti, J.: UWB Theory and Applications. Wiley, New york (2004). https://doi.org/10.1002/0470869194

    Book  Google Scholar 

  15. Byrareddy, C.R., Reddy, N.C.E., Sridhar, C.S.: A compact dual band planar RMSA for WLAN/WIMAX applications. Int. J. Adv. Eng. Technol. 2(1), 98–104 (2012). ISSN 2231-1963

    Google Scholar 

  16. Balanis, C.A.: Advanced Engineering Electromagnetics. Wiley, Newyork (1989)

    Google Scholar 

  17. Krishna, D.D., Gopikrishna, M., Anandan, C.K.: A CPW fed triple band monopole antenna for WiMAX/WLAN applications slot antenna. In: IEEE Proceedings of 38th European Microwave Conference, pp. 897–900 (2008). https://doi.org/10.1109/EUMC.2008.4751598

  18. Foudazi, A., Hassani, H.R., Nezhad, S.M.A.: Small UWB planar monopole antenna with added GPS/GSM/WLAN bands. IEEE Trans. Antennas Propag. 60(6), 2987–2992 (2012). https://doi.org/10.1109/TAP.2012.2194632

    Article  Google Scholar 

  19. Lee, S., Park, H., Hong, S., Choi, J.: Design of a multiband antenna using a planner inverted-F structure. In: Proceedings of the 9th International Conference on Advanced Communication Technology, vol. 3, pp. 1665–1668 (2007). https://doi.org/10.1109/ICACT.2007.358690

  20. Song, K., Yin, Y.Z., Chen, B.: Triple-band open slot antenna with a slit and a strip for WLAN/wiMAX applications. Prog. Electromamagn. Res. Latt. 22, 139–146 (2011). https://doi.org/10.2528/PIERL11011406

    Article  Google Scholar 

  21. Bhave, M.M., Yelalwar, R.G.: Multiband reconfigurable antenna for cognitive-radio. In: 2014 Annual IEEE India Conference (INDICON) (2014). https://doi.org/10.1109/INDICON.2014.7030609

  22. Sigmaplot and Microsoft excel software

    Google Scholar 

  23. Ansoft HFSS (High Frequency Structure Simulation) V-15 tool by Ansoft: HFSS user manual. Ansoft Corporation, USA

    Google Scholar 

  24. Help Share Ideas. http://www.helpshareideas.com

  25. Gurubasavanna, M.G., Shariff, S.U., Mamatha, R., Sathisha, N.: Multimode authentication based electronic voting kiosk using Raspberry Pi. In: 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) (2018)

    Google Scholar 

Download references

Acknowledgment

All the authors are thankful and gratefully acknowledge the support encouragement & feedback received from the colleagues from the Electronics & Communication department, Bangalore Institute of Technology Research Centre, Bengaluru, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleem Ulla Shariff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deepthi Chamkur, V., Byrareddy, C.R., Shariff, S.U. (2020). Dual Band Microstrip Patch Ultra-wide Band Antenna for LTE Wireless Applications. In: Hemanth, D., Shakya, S., Baig, Z. (eds) Intelligent Data Communication Technologies and Internet of Things. ICICI 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-34080-3_78

Download citation

Publish with us

Policies and ethics