Skip to main content

A Comparison of ACO, GA and SA for Solving the TSP Problem

  • Chapter
  • First Online:
Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine

Part of the book series: Studies in Computational Intelligence ((SCI,volume 827))

Abstract

The ACO algorithm is an optimization algorithm, recognized for being very efficient in problems of finding routes and planning paths in roads. In terms of the problem of the traveling salesman, ACO algorithm has been able to find optimal solutions to the problem, we want to make a comparison with the algorithms GA and SA, to determine which of these obtains better results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Dorigo, Optimization, Learning and Natural Algorithms. (Ph.D. Thesis, Politecnico di Milano, Italian, 1992)

    Google Scholar 

  2. M. Dorigo, G.D. Caro, Ant colony optimization: a new meta-heuristic, in Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2 (1999), pp. 1470–1477

    Google Scholar 

  3. M. Dorigo, L.M. Gambardella, Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  4. J.L. Deneubourg, S. Aron, S. Goss, J.M. Pasteels, The self-organizing exploratory pattern of the argentine ant. J. Insect Behav. 3, 159–168 (1990)

    Article  Google Scholar 

  5. J.M. Pasteels, J.L. Deneubourg, S. Goss, Self-organization mechanisms in ant societies (I): trail recruitment to newly discovered food sources. Experientia Suppl 76, 579–581 (1989)

    Google Scholar 

  6. M. Dorigo, L.M. Gambardella, Ant colonies for the travelling salesman problem. Biosystems 43(2), 73–81 (1997)

    Article  Google Scholar 

  7. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (University of Michigan Press, Ann Arbor, MI, 1975)

    MATH  Google Scholar 

  8. Y. Tsujimura, M. Gen, Entropy-based genetic algorithm for solving TSP, in 1998 Second International Conference on Knowledge Based Intelligent Electronic Systems. Proceedings KES 98 (1998)

    Google Scholar 

  9. H.A. Mukhairez, A.Y.A. Maghari, Performance comparison of simulated annealing, GA and ACO applied TSP. Int. J. Intell. Comput. Res. (IJICR) 6(4) (2015)

    Article  Google Scholar 

  10. J.S.H. Zhan, Z.J. Lin, Y.W. Zhang, Zhong: List-based simulated annealing algorithm for traveling salesman problem. Comput. Intell. Neurosci. 2016, Article ID 1712630, 12 p (2016)

    Google Scholar 

  11. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  12. L. Bo, M. Peisheng, Simulated annealing-based ant colony algorithm for traveling salesman problems. Nat. Sci. 11, 26–30 (2009)

    MathSciNet  MATH  Google Scholar 

  13. M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)

    Article  Google Scholar 

  14. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, San Francisco, 1979)

    MATH  Google Scholar 

  15. E.H.L. Aarts, J.K. Lenstra, The travelling salesman problem: a case study in local optimization, in Local Search in Combinatorial Optimization (1997)

    Google Scholar 

  16. R. Johnson, M.G. Pilcher, in The Traveling Salesman Problem, ed. by E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B Shmoys, John Wiley (1988)

    Google Scholar 

  17. D.J. Rosenkrantz, R.E. Stearns, P.M. Lewis, An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6, 563–581 (1977)

    Article  MathSciNet  Google Scholar 

  18. A. Acan, GAACO: A GA + ACO hybrid for faster and better search capability, in Ant Algorithms (2002), pp. 300–301

    Chapter  Google Scholar 

  19. A. Colorni, M. Dorigo, V. Maniezzo, An investigation of some properties of an ant algorithm, in Proceedings of Parallel Problem Solving from Nature Conference (PPSN 92) (1992), pp. 509–520

    Google Scholar 

  20. B. Freisleben, P. Merz, New genetic local search operators for the traveling salesman problem, in Proceedings of PPSN IVth International Conference on Parallel Problem Solving from Nature (1996), pp. 890–899

    Google Scholar 

  21. P. Stodola, J. Mazal, M. Podhorec, Parameter tuning for the ant colony optimization algorithm used in ISR systems. Int. J. Appl. Math. Inform. 9 (2015)

    Google Scholar 

  22. T. Stutzle, M. Lopez, P. Pellegrini, M. Maur, M.M.D. Oca, M. Birattari, M. Dorigo, Parameter adaptation in ant colony optimization, Technical Report Series (2010)

    Google Scholar 

  23. B. Gonzalez, F. Valdez, P. Melin, A gravitational search algorithm using type-2 fuzzy logic for parameter adaptation, in Nature-Inspired Design of Hybrid Intelligent Systems, vol. 667 (Springer, Cham, 2017)

    Google Scholar 

  24. C.I. Gonzalez, P. Melin, J.R. Castro, O. Mendoza, O. Castillo, An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2016)

    Article  Google Scholar 

  25. C.I. Gonzalez, P. Melin, J.R. Castro, O. Castillo, O. Mendoza, Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)

    Article  Google Scholar 

  26. P. Melin, D. Sanchez, Multi-objective optimization for modular granular neural networks applied to pattern recognition. Inf. Sci. 460, 594–610 (2018)

    Article  MathSciNet  Google Scholar 

  27. P. Ochoa, O. Castillo, J. Soria, Differential evolution using fuzzy logic and a comparative study with other metaheuristics, in Nature-Inspired Design of Hybrid Intelligent Systems, vol. 667 (Springer, Cham, 2017)

    Google Scholar 

  28. F. Olivas, F. Valdez, O. Castillo, C.I. González, G.E. Martinez, P. Melin, Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2017). https://doi.org/10.1016/j.asoc.2016.12.015

    Article  Google Scholar 

  29. D. Sanchez, P. Melin, O. Castillo, Optimization of modular granular neural networks using a firefly algorithm for human recognition. Eng. Appl. AI 64, 172–186 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express thank to the Consejo Nacional de Ciencia y Tecnología and Tecnológico Nacional de Mexico/Tijuana Institute of Technology for the facilities and resources granted for the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fevrier Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valdez, F., Moreno, F., Melin, P. (2020). A Comparison of ACO, GA and SA for Solving the TSP Problem. In: Castillo, O., Melin, P. (eds) Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Studies in Computational Intelligence, vol 827. Springer, Cham. https://doi.org/10.1007/978-3-030-34135-0_13

Download citation

Publish with us

Policies and ethics