Skip to main content

CDNN Model for Insect Classification Based on Deep Neural Network Approach

  • Conference paper
  • First Online:
Context-Aware Systems and Applications, and Nature of Computation and Communication (ICCASA 2019, ICTCC 2019)

Abstract

The Mekong Delta has made great progress in rice production over the past ten years. Intensive cultivation with multi-cropping brings many benefits to farmers as well as the food export industry. However, this is also an opportunity for raising epidemic outbreak, Brown Plant-hoppers can directly damage by sucking the rice’s vitality, and they can cause the wilting and complete drying of rice plants, a noncontagious disease known as “Hopper-burn”. In this article, we propose the CDNN model for insect classification based on Neural Network and Deep Learning approach. First, insect images are collected and extracted features based on Dense Scale-Invariant Feature Transform. Then, Bag of Features is used for image representation as feature vectors. Lastly, these feature vectors are trained and classified using CDNN model based on Deep Neural Network. The approach is demonstrated with experiments, and measured by a large amount of Brown Plant-hoppers and Ladybugs samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chavez, A.J.: Image classification with dense sift sampling an exploration of optimal parameters. Kansas State University, Manhattan (2012)

    Google Scholar 

  2. Tran, A.C., Tran, N.C., Huynh, H.X.: An approach to detecting brown plant hopper based on morphological operations. In: Vinh, P.C., Barolli, L. (eds.) ICTCC 2016. LNICST, vol. 168, pp. 52–61. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46909-6_6

    Chapter  Google Scholar 

  3. Candel, A., LeDell, E., Parmar, V., Arora, A.: Deep Learning with H2O, 5th edn. H2O.ai (2016)

    Google Scholar 

  4. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. The Springer International Series in Engineering and Computer Science. Springer, Berlin (1992). https://doi.org/10.1007/978-1-4615-3626-0

    Book  MATH  Google Scholar 

  5. Lu, A., Hou, X., Liu, C.-L., Chen, X.: Insect species recognition using discriminative local soft coding. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 1221–1224. IEEE, Tsukuba (2012)

    Google Scholar 

  6. Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 1469–1472. ACM, New York and Firenze (2010)

    Google Scholar 

  7. Lam, B.H., Van Tran, H., Huynh, H.X., Pottier, B.: Synchoronous networks for insects surveillance. In: Proceedings of the Sixth International Symposium on Information and Communication Technology, pp. 163–170, Hue City (2015)

    Google Scholar 

  8. Shepard, B.M., Barrion, A.T., Litsinger, J.A.: Friends of the rice farmer: helpful insects, spiders, and pathogens. International Rice Research Institute (1987)

    Google Scholar 

  9. Elkan, C.: Using the triangle inequality to accelerate k-means. In: Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), pp. 147–153. AAAI Press, Washington, DC (2003)

    Google Scholar 

  10. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Neural Information Processing Systems Conference (2013)

    Google Scholar 

  11. Christopher, M.: Bishop: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  12. Xie, C., et al.: Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning. Comput. Electron. Agric. 119, 123–132 (2015)

    Article  Google Scholar 

  13. David, G.: Lowe: distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  14. Lowe, D.G.: object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  15. Niu, F., Recht, B., Re, C., Wright, S.J.: Hogwild: a lock-free approach to parallelizing stochastic gradient descent. In: Advances in Neural Information Processing Systems, pp. 693–701 (2011)

    Google Scholar 

  16. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 10, 1–40 (2009)

    MATH  Google Scholar 

  17. Lim, J., Cho, J., Nam, T., Kim, S.: Development of a classification algorithm for butterflies and ladybugs. In: TENCON 2006 - 2006 IEEE Region 10 Conference, pp. 51–63. IEEE, Hong Kong (2006)

    Google Scholar 

  18. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18, 509–517 (1975)

    Article  Google Scholar 

  19. Sivic, J., Zisserman, A.: Video google: a textretrieval approach to object matching in videos. In: Proceedings Ninth IEEE International Conference on Computer Vision, pp. 1470–1477. IEEE, Nice (2003)

    Google Scholar 

  20. Du, K.-L., Swamy, M.N.S.: Neural Networks and Statistical Learning. Springer, London (2014). https://doi.org/10.1007/978-1-4471-5571-3

    Book  MATH  Google Scholar 

  21. Zhu, L.Q., Zhang, Z.: Auto-classification of insect images based on color histogram and GLCM. In: Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, Shandong, China, pp. 2589–2593 (2010)

    Google Scholar 

  22. MathWorks Homepage. http://www.mathworks.com. Accessed 25 June 2018

  23. Pathak, M.D., Khan, Z.R.: Insects pests of rice. International Rice Research Institute (1994)

    Google Scholar 

  24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  25. RStudio Homepage. https://www.rstudio.com. Accessed 25 June 2018

  26. López-Sastre, R.J., Renes-Olalla, J., Gil-Jiménez, P., Maldonado-Bascón, S.: Visual word aggregation. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 676–683. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21257-4_84

    Chapter  Google Scholar 

  27. Hassan, S.N.A., Rahman, N.S.A., Htike, Z., Win, S.L.: Advanced in automatic insect classification. Electr. Electron. Eng.: Int. J. 3(2), 51–63 (2014)

    Google Scholar 

  28. Lazebnik, S., Schmid, C., Pomce, J.: Beyond bag of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2169–2178. IEEE, New York (2006)

    Google Scholar 

  29. O’Hara, S., Draper, B.A.: Introduction to the bag of features paradigm for image classification and retrieval. arXiv:1101.3354v1 (2011)

  30. Visa, S., Ramsay, B., Ralescu, A., Knaap, E.V.D.: Confusion matrix-based feature selection. In: Proceedings of The 22nd Midwest Artificial Intelligence and Cognitive Science Conference 2011, Cincinnati, Ohio, USA, pp. 120–127 (2011)

    Google Scholar 

  31. Vo, T., Tran, D., Ma, W.: Tensor decomposition of dense SIFT descriptors in object recognition. In: European Symposium on Artificial Neural Networks, Bruges, Belgium, vol. 1, pp. 319–324 (2014)

    Google Scholar 

  32. The R Project for Statistical Computing Homepage. https://www.r-project.org. Accessed 25 June 2018

  33. VLFeat Homepage. http://www.vlfeat.org. Accessed 25 June 2018

  34. LeCun, Y.: A theoretical framework for back-propagation. In: Proceeding of the 1988 Connectionist Model Summer School, pp. 21–28. Morgan Kaufmann, Pittsburg (1988)

    Google Scholar 

  35. Bengio, Y.: Deep learning of representations: looking forward. In: Dediu, A.-H., Martín-Vide, C., Mitkov, R., Truthe, B. (eds.) SLSP 2013. LNCS (LNAI), vol. 7978, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39593-2_1

    Chapter  Google Scholar 

  36. Harris, Z.S.: Distributional structure. Word 10, 146–162 (1954)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tu Van Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huynh, H.X., Lam, D.B., Van Ho, T., Le, D.T., Le, L.M. (2019). CDNN Model for Insect Classification Based on Deep Neural Network Approach. In: Vinh, P., Rakib, A. (eds) Context-Aware Systems and Applications, and Nature of Computation and Communication. ICCASA ICTCC 2019 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 298. Springer, Cham. https://doi.org/10.1007/978-3-030-34365-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34365-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34364-4

  • Online ISBN: 978-3-030-34365-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics