Skip to main content

Regulation of Proneural Wave Propagation Through a Combination of Notch-Mediated Lateral Inhibition and EGF-Mediated Reaction Diffusion

  • Chapter
  • First Online:
Notch Signaling in Embryology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1218))

Abstract

Notch-mediated lateral inhibition regulates binary cell fate choice, resulting in salt-and-pepper pattern formation during various biological processes. In many cases, Notch signaling acts together with other signaling systems. However, it is not clear what happens when Notch signaling is combined with other signaling systems. Mathematical modeling and the use of a simple biological model system will be essential to address this uncertainty. A wave of differentiation in the Drosophila visual center, the “proneural wave,” accompanies the activity of the Notch and EGF signaling pathways. Although all of the Notch signaling components required for lateral inhibition are involved in the proneural wave, no salt-and-pepper pattern is found during the progression of the proneural wave. Instead, Notch is activated along the wave front and regulates proneural wave progression. How does Notch signaling control wave propagation without forming a salt-and-pepper pattern? A mathematical model of the proneural wave, based on biological evidence, has demonstrated that Notch-mediated lateral inhibition is implemented within the proneural wave and that the diffusible action of EGF cancels salt-and-pepper pattern formation. The results from numerical simulation have been confirmed by genetic experiments in vivo and suggest that the combination of Notch-mediated lateral inhibition and EGF-mediated reaction diffusion enables a novel function of Notch signaling that regulates propagation of the proneural wave. Similar mechanisms may play important roles in diverse biological processes found in animal development and cancer pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467(7313):323–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776

    Article  CAS  PubMed  Google Scholar 

  • Baker NE, Yu SY (1997) Proneural function of neurogenic genes in the developing Drosophila eye. Curr Biol 7(2):122–132

    Article  CAS  PubMed  Google Scholar 

  • Baker AT, Zlobin A, Osipo C (2014) Notch-EGFR/HER2 bidirectional crosstalk in breast cancer. Front Oncol 4:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Baonza A, Freeman M (2001) Notch signalling and the initiation of neural development in the Drosophila eye. Development 128(20):3889–3898

    CAS  PubMed  Google Scholar 

  • Cabrera CV, Alonso MC (1991) Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. EMBO J 10(10):2965–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier JR, Monk NA, Maini PK, Lewis JH (1996) Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. J Theor Biol 183(4):429–446

    Article  CAS  PubMed  Google Scholar 

  • Corson F, Couturier L, Rouault H, Mazouni K, Schweisguth F (2017) Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science 356(6337):eaai7407

    Article  PubMed  CAS  Google Scholar 

  • del Alamo D, Rouault H, Schweisguth F (2011) Mechanism and significance of cis-inhibition in Notch signalling. Curr Biol 21(1):R40–R47

    Article  PubMed  CAS  Google Scholar 

  • Doroquez DB, Rebay I (2006) Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 41(6):339–385

    Article  CAS  PubMed  Google Scholar 

  • Dutt A, Canevascini S, Froehli-Hoier E, Hajnal A (2004) EGF signal propagation during C. elegans vulval development mediated by ROM-1 rhomboid. PLoS Biol 2(11):e334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Egger B, Boone JQ, Stevens NR, Brand AH, Doe CQ (2007) Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev 2:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Formosa-Jordan P, Ibanes M, Ares S, Frade JM (2012) Regulation of neuronal differentiation at the neurogenic wavefront. Development 139(13):2321–2329

    Article  CAS  PubMed  Google Scholar 

  • Freeman M (1996) Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87(4):651–660

    Article  CAS  PubMed  Google Scholar 

  • Ghysen A, Dambly-Chaudiere C, Jan LY, Jan YN (1993) Cell interactions and gene interactions in peripheral neurogenesis. Genes Dev 7(5):723–733

    Article  CAS  PubMed  Google Scholar 

  • Heberlein U, Wolff T, Rubin GM (1993) The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell 75(5):913–926

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, Fujiwara T, Ishidate F, Kageyama R (2013) Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342(6163):1203–1208

    Article  CAS  PubMed  Google Scholar 

  • Jarman AP, Grau Y, Jan LY, Jan YN (1993) atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73(7):1307–1321

    Article  CAS  PubMed  Google Scholar 

  • Jarman AP, Grell EH, Ackerman L, Jan LY, Jan YN (1994) Atonal is the proneural gene for Drosophila photoreceptors. Nature 369(6479):398–400

    Article  CAS  PubMed  Google Scholar 

  • Jorg DJ, Caygill EE, Hakes AE, Contreras EG, Brand AH, Simons BD (2019) The proneural wave in the Drosophila optic lobe is driven by an excitable reaction-diffusion mechanism. eLife 8:e40919

    Article  PubMed  PubMed Central  Google Scholar 

  • Kageyama R, Niwa Y, Isomura A, Gonzalez A, Harima Y (2012) Oscillatory gene expression and somitogenesis. Wiley Interdiscip Rev Dev Biol 1(5):629–641

    Article  CAS  PubMed  Google Scholar 

  • Kawamori H, Tai M, Sato M, Yasugi T, Tabata T (2011) Fat/Hippo pathway regulates the progress of neural differentiation signaling in the Drosophila optic lobe. Dev Growth Differ 53(5):653–667

    Article  CAS  PubMed  Google Scholar 

  • Kulesa PM, Schnell S, Rudloff S, Baker RE, Maini PK (2007) From segment to somite: segmentation to epithelialization analyzed within quantitative frameworks. Dev Dyn 236(6):1392–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunisch M, Haenlin M, Campos-Ortega JA (1994) Lateral inhibition mediated by the Drosophila neurogenic gene delta is enhanced by proneural proteins. Proc Natl Acad Sci U S A 91(21):10139–10143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Erclik T, Bertet C, Chen Z, Voutev R, Venkatesh S, Morante J, Celik A, Desplan C (2013) Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498(7455):456–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubensky DK, Pennington MW, Shraiman BI, Baker NE (2011) A dynamical model of ommatidial crystal formation. Proc Natl Acad Sci U S A 108(27):11145–11150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Zhou Y, Beachy PA, Moses K (1993) The segment polarity gene hedgehog is required for progression of the morphogenetic furrow in the developing Drosophila eye. Cell 75(5):927–938

    Article  CAS  PubMed  Google Scholar 

  • Neumann CJ, Nuesslein-Volhard C (2000) Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 289(5487):2137–2139

    Article  CAS  PubMed  Google Scholar 

  • Orihara-Ono M, Toriya M, Nakao K, Okano H (2011) Downregulation of Notch mediates the seamless transition of individual Drosophila neuroepithelial progenitors into optic medullar neuroblasts during prolonged G1. Dev Biol 351(1):163–175

    Article  CAS  PubMed  Google Scholar 

  • Pancewicz-Wojtkiewicz J (2016) Epidermal growth factor receptor and notch signaling in non-small-cell lung cancer. Cancer Med 5(12):3572–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennington MW, Lubensky DK (2010) Switch and template pattern formation in a discrete reaction-diffusion system inspired by the Drosophila eye. Eur Phys J E Soft Matter 33(2):129–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy BV, Rauskolb C, Irvine KD (2010) Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development 137(14):2397–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, Suzuki T, Nakai Y (2013) Waves of differentiation in the fly visual system. Dev Biol 380(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Yasugi T, Minami Y, Miura T, Nagayama M (2016) Notch-mediated lateral inhibition regulates proneural wave propagation when combined with EGF-mediated reaction diffusion. Proc Natl Acad Sci U S A 113(35):E5153–E5162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson P (1990) Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system of Drosophila. Development 109(3):509–519

    CAS  PubMed  Google Scholar 

  • Sprinzak D, Lakhanpal A, Lebon L, Santat LA, Fontes ME, Anderson GA, Garcia-Ojalvo J, Elowitz MB (2010) Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465(7294):86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaram MV (2005) The love–hate relationship between Ras and Notch. Genes Dev 19(16):1825–1839

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Kaido M, Takayama R, Sato M (2013) A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev Biol 380(1):12–24

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Yasugi T, Nagayama M, Sato M, Ei SI (2018) JAK/STAT guarantees robust neural stem cell differentiation by shutting off biological noise. Sci Rep 8(1):12484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urban S, Lee JR, Freeman M (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107(2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Yang HJ, Silva AO, Koyano-Nakagawa N, McLoon SC (2009) Progenitor cell maturation in the developing vertebrate retina. Dev Dyn 238(11):2823–2836

    Article  PubMed  Google Scholar 

  • Yasugi T, Umetsu D, Murakami S, Sato M, Tabata T (2008) Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development 135:1471–1480

    Article  CAS  PubMed  Google Scholar 

  • Yasugi T, Sugie A, Umetsu D, Tabata T (2010) Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 137(19):3193–3203

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Praxenthaler H, Tabaja N, Torella R, Preiss A, Maier D, Kovall RA (2016) Structure and function of the Su(H)-Hairless repressor complex, the major antagonist of Notch signaling in Drosophila melanogaster. PLoS Biol 14(7):e1002509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • zur Lage PI, Prentice DR, Holohan EE, Jarman AP (2003) The Drosophila proneural gene amos promotes olfactory sensillum formation and suppresses bristle formation. Development 130(19):4683–4693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Masaharu Nagayama and Yoshitaro Tanaka for their critical comments. This work was supported by Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Agency (JST) (Grant JPMJCR14D3 to M.S.); Grants-in-Aid for Scientific Research on Innovative Areas and Grants-in-Aid for Scientific Research (B) and (C) from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) (Grants JP17H05739, JP17H05761, JP17H03542, and JP19H04771 to M.S.; and Grants JP18H05099, 19K06674, and 19H04956 to T.Y.); Takeda Science Foundation (to M.S. and T.Y.); and a Grant for Cooperative Research on ‘Network Joint Research Center for Materials and Devices’ (to M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, M., Yasugi, T. (2020). Regulation of Proneural Wave Propagation Through a Combination of Notch-Mediated Lateral Inhibition and EGF-Mediated Reaction Diffusion. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 1218. Springer, Cham. https://doi.org/10.1007/978-3-030-34436-8_5

Download citation

Publish with us

Policies and ethics