Skip to main content

Increasing the Solar Share for Domestic Hot Water, Heating and Cooling in the Built Environment

  • Chapter
  • First Online:
Solar Energy Conversion Systems in the Built Environment

Part of the book series: Green Energy and Technology ((GREEN))

  • 549 Accesses

Abstract

The chapter describes solar thermal systems implemented in the built environment to produce thermal energy for domestic hot water, heating and cooling. A design algorithm of the solar thermal systems is discussed, starting with the assessment of the thermal energy demand and of the solar energy potential used in sizing the main components. The optimization of the solar thermal collectors’ output according to the thermal energy demand is addressed by considering forward tracking to increase the thermal output and inverse tracking to protect against overheating. Theoretical and experimental results are analysed for both tracking modes applied to flat plate solar thermal collectors integrated on building facades and rooftops. A novel solution to increase the solar energy share in meeting the thermal energy demand in a building and the architectural acceptance is discussed, relying on small-sized solar thermal collectors having trapezoidal and triangular shapes and non-conventional colours (red, green, orange, etc.). Renewable energy mixes are analysed for simulated and existing nearly Zero Energy Buildings. Economic and financial aspects of the solar thermal systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amaral AR, Rodrigues E, Gaspar A Rodrigues, Gomes A (2018) Review on performance aspects of nearly zero-energy districts. Sustain Cities Soc 43:406–420

    Article  Google Scholar 

  2. American Society of Heating, Refrigerating and Air-Conditioning Engineers (2017) ASHRAE handbook. Fundamentals. Atlanta, GA

    Google Scholar 

  3. Andrews JW (1981) Ground coupled solar heat pumps: analysis of four options. In: American Society of Mechanical Engineers (ed) 4th ASME solar energy division conference. American Society of Mechanical Engineers, Reno, Nevada

    Google Scholar 

  4. Association of German Engineers (2014) VDI 6002-1 Solar heating for potable water; Basic principles; System technology and application in residential buildings. Publishing House of German Engineers Association

    Google Scholar 

  5. Baetschmann M, Leibundgut H (2012) LowEx solar building system: integration of PV/T collectors into low exergy building systems. Energy Proc 30:1052–1059

    Article  Google Scholar 

  6. Buker MS, Riffat SB (2016) Solar assisted heat pump systems for low temperature water heating applications: a systematic review. Renew Sustain Energy Rev 55:399–413

    Article  Google Scholar 

  7. Burduhos BG, Visa I, Neagoe M, Badea M (2015) Modeling and optimization of the global solar irradiance collecting efficiency. Int J Green Energy 12(7):743–755

    Article  Google Scholar 

  8. Cimmino M, Eslami-Nejad P (2017) A simulation model for solar assisted shallow ground heat exchangers in series arrangement. Energy Build 157:227–246

    Article  Google Scholar 

  9. Comsit M, Visa I, Moldovan M, Isac L (2014) Architecturally integrated multifunctional solar thermal façades. In: Sustainable energy in the built environment-steps towards nZEB. Springer International Publishing, Berlin, pp 47–65

    Google Scholar 

  10. Dalenbäck J-O (1990) Central solar heating plants with seasonal storage—status report (D14:1990). IEA Solar heating and cooling programme—task VII. Swedish Council for Building Research, Stockholm, Sweden

    Google Scholar 

  11. Dan A, Chattopadhyay K, Barshilia HC, Basu B (2016) Colored selective absorber coating with excellent durability. Thin Solid Films 620:17–22

    Article  Google Scholar 

  12. Dudita M, Isac L, Duta A (2012) Influence of solvents on properties of solar selective coatings obtained by spray pyrolysis. B Mater Sci 35(6):997–1002

    Article  Google Scholar 

  13. Duffie J, Beckmann W (2013) Solar engineering of thermal processes. Wiley Interscience, New York

    Book  Google Scholar 

  14. Duta A, Isac L, Milea A, Ienei E, Perniu D (2014) Coloured solar-thermal absorbers—a comparative analysis of cermet structures. Energy Proc 48:543–553

    Article  Google Scholar 

  15. Emmi G, Zarrella A, De Carli M, Galgaro A (2015) An analysis of solar assisted ground source heat pumps in cold climates. Energy Convers Manage 106:660–675

    Article  Google Scholar 

  16. Eslami-Nejad P, Langlois A, Chapuis S, Bernier M, Faraj W (2009) Solar Heat Injection into Boreholes. In: 4th Canadian solar buildings conference, Toronto, pp 237–246

    Google Scholar 

  17. European Heat Pump Association (2018) European Heat Pump Market and Statistics Report 2018, Brussels. https://www.ehpa.org/market-data/market-report/. Accessed 01 May 2019

  18. European Parliament (2010) The Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Union 53

    Google Scholar 

  19. Fahl P, Ganapathisubbu S (2011) Tracking benefits for solar collectors installed in Bangalore. J Renew Sustain Energy 3:1–12

    Article  Google Scholar 

  20. Farooqui SZ (2013) A gravity based tracking system for box type solar cookers. Sol Energy 92:62–68

    Article  Google Scholar 

  21. Fischer D, Madani H (2017) On heat pumps in smart grids: a review. Renew Sust Energy Rev 70:342–357

    Article  Google Scholar 

  22. Fischer D, Toral TR, Lindberg KB, Wille-Haussmann B, Madani H (2014) Investigation of thermal storage operation strategies with heat pumps in German multi family houses. Energy Proc 58:137–144

    Article  Google Scholar 

  23. Fischer D, Rautenberg F, Wirtz T, Wille-Haussmann B, Madani H (2015) Smart meter enabled control for variable speed heat pumps to increase PV self-consumption. In: 24th IIR International Congress of Refrigeration. https://doi.org/10.13140/RG.2.1.2566.3762

  24. Florio P, Munari Probst MC, Sculler A, Roecker C (2018) Assessing visibility in multi-scale urban planning: A contribution to a method enhancing social acceptability of solar energy in cities. Sol Energy 173:97–109

    Article  Google Scholar 

  25. Frank E, Mauthner F, Fischer S (2015) Overheating prevention and stagnation handling in solar process heat applications, Technical Report A.1.2, IEA SHC Task 49. http://task49.iea-shc.org. Accessed 5 Jun 2017

  26. Freeman T, Mitchell J, Audit T (1979) Performance of combined solar-heat pump systems. Sol Energy 22:125–135

    Article  Google Scholar 

  27. Gladen A, Davidson J, Mantell SC (2014) Selection of thermotropic materials for overheat protection of polymer absorbers. Sol Energy 104:42–51

    Article  Google Scholar 

  28. Good C, Chen J, Dai Y, Grete A (2015) Hybrid photovoltaic-thermal systems in buildings—a review. Energy Proc 70:683–690

    Article  Google Scholar 

  29. Grundfos (2019) One Alpha to fit them all, Denmark. http://pdf.directindustry.com/pdf/grundfos/alpha1-l/5420-782049.html. Accessed 01 May 2019

  30. Hadorn JC (2015) Solar and heat pump systems for residential buildings, 1st edn. Ernst & Sohn GmbH & Co., Berlin

    Book  Google Scholar 

  31. Haller MY, Carbonell D, Mojic I, Winteler C, Bertram E, Bunea M, Lerch W, Ochs F (2014) Solar and heat pump systems—summary of simulation results of the IEA SHC task 44/HPP annex 38. In: 11th IEA heat pump conference, Montreal, pp 1–12

    Google Scholar 

  32. Harrison S, Cruickshank CA (2012) A review of strategies for the control of high temperature stagnation in solar collectors and systems. Energy Proc 30:793–804

    Article  Google Scholar 

  33. Hausner R, Fink C (2000) Stagnation behaviour of thermal solar systems. In: EUROSUN, Copenhagen, 19–22 June 2000

    Google Scholar 

  34. Hausner R, Fink C (2002) Stagnation behaviour of thermal solar systems. A report of IEA SHC—task 26, Solar Combysystems. http://task26.iea-shc.org. Accessed 7 Jun 2017

  35. Hirvonen J, Sirén K (2018) A novel fully electrified solar heating system with a high renewable fraction—optimal designs for a high latitude community. Renew Energy 127:298–309

    Article  Google Scholar 

  36. International Energy Agency (2013) solar heating and cooling task 44/HPP Annex 38 solar and heat pump systems. http://www.iea-shc.org/Data/Sites/1/publications/T44A38-Newsletter-2013-02.pdf. Accessed 02 Feb 2019

  37. International Energy Agency (2017) Trends 2017 in photovoltaic applications, Task 1, Annex 32. http://www.iea-pvps.org/index.php?id=92&eID=dam_frontend_push&docID=4245. Accessed 01 Feb 2019

  38. International Energy Agency (2018) Solar heat worldwide 2018, Solar Update, 67. https://www.iea-shc.org/solar-heat-worldwide. Accessed 29 May 2019

  39. Institute for Solar Energy Research (2019) Heat pipes in solar collectors—thermodynamic fundamentals and evaluation plus new approaches of application. www.isfh.de/institut. Accessed 29 May 2019

  40. Jani DE, Mishra M, Kumar Sahoo P (2018) A critical review on application of solar energy as renewable regeneration heat source in solid desiccant–vapour compression hybrid cooling system. J Build Eng 18:107–124

    Article  Google Scholar 

  41. Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust 30:231–295

    Article  Google Scholar 

  42. Kamel RS, Fung AS, Dash PRH (2015) Solar systems and their integration with heat pumps: a review. Energy Build 87:395–412

    Article  Google Scholar 

  43. Kaplan S (1983) Energy economics: quantitative methods for energy and environmental decisions. McGraw-Hill, New York

    Google Scholar 

  44. Kok JF, Parteli EJR, Michaels TI, Karam DB (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75(10):106–901

    Article  Google Scholar 

  45. Kurnitski J (2013) Cost optimal and nearly zero-energy buildings (nZEB). Definitions, calculation principles and case studies. Springer, London

    Book  Google Scholar 

  46. Lai C-M, Hokoi S (2015) Solar façades: a review. Build Environ 91:152–165

    Article  Google Scholar 

  47. Lee EJ, Entchev E, Soesanto AP, Kang EC (2014) Photovoltaic thermal (PVT) integrated ground source heat pump system annual energy performance simulation for a multi-load case. In: 11th international energy agency heat pump conference, Montreal, Canada

    Google Scholar 

  48. Lobaccaro G, Croce S, Lindkvist C, Munari Probst MC, Scognamiglio A, Dahlberg J, Lundgren M, Wall M (2019) A cross-country perspective on solar energy in urban planning: lessons learned from international case studies. Renew Sust Energy Rev 108:209–237

    Article  Google Scholar 

  49. Marken C (2011) Overcoming overheating. Home Power Review 142. http://www.homepower.com/articles/solar-water-heating/domestic-hot-water/overcoming-overheating. Accessed 5 Jun 2017

  50. Martinopoulos G (2018) Life cycle assessment of solar energy conversion systems in energetic retrofitted buildings. J Build Eng 20:256–263

    Article  Google Scholar 

  51. Meggers F, Ritter V, Goffin P, Baetschmann M, Leibundgut H (2012) Low exergy building systems implementation. Energy 41:48–55

    Article  Google Scholar 

  52. Meliss M (1997) Regenerative Energiequellen - Praktikum. Springer, Heidelberg

    Book  Google Scholar 

  53. Mertin S, Caer VH-L, Joly M, Mack I, Oelhafen P, Scartezzini J-L, Schuler A (2014) Reactively sputtered coatings on architectural glazing for coloured active solar thermal facades. Energy Build 68:764–770

    Article  Google Scholar 

  54. Ministry of Regional Development and Public Administration (2015) Government of Romania, Standard I9-2015 for the design, construction and operation of sanitary facilities for buildings. Official Journal of Romania, I, 830 bis

    Google Scholar 

  55. Mohanraj M, Belyayev Y, Jayaraj S, Kaltayev A (2018) Research and developments on solar assisted compression heat pump systems—a comprehensive review (Part-B: Applications). Renew Sustain Energy Rev 83:124–155

    Article  Google Scholar 

  56. Moldovan M, Visa I (2017) Renewable energy systems for a multifamily building community. In: Nearly zero energy communities. Springer, Berlin, pp 129–147

    Google Scholar 

  57. Moldovan M, Visa I (2019) Development of an indoor testing rig for façade integrated solar thermal collectors. In: E3S Web Conference, vol 85, p 04005. https://doi.org/10.1051/e3sconf/20198504005

    Article  Google Scholar 

  58. Moldovan M, Visa I, Neagoe M, Burduhos B (2014) Solar heating & cool-ing energy mixes to transform low energy buildings in nearly zero energy buildings. Energy Proc 48:924–937

    Article  Google Scholar 

  59. Moldovan M, Visa I, Duta A (2017) Enhanced sustainable cooling for low energy office buildings in continental temperate climate. J Energy Eng 143(5):04017054-1-12

    Article  Google Scholar 

  60. Moldovan M, Visa I, Burduhos B (2019) Experimental comparison of flat plate and evacuated tube solar thermal collectors for domestic hot water preparation in education facilities. J Sustain Develop Energy Water Environ Syst. http://dx.doi.org/10.13044/j.sdewes.d7.0285

  61. Muehling O, Seeboth A, Ruhmann R, Eberhardt V, Byker H, Anderson C, De Jong S (2014) Solar collector cover with temperature-controlled solar light transmittance. Energy Proc 48:163–171

    Article  Google Scholar 

  62. Munari Probst M, Roecker C (2007) Towards an improved architectural quality of building integrated solar thermal systems (BIST). Sol Energy 81:1104–1116

    Article  Google Scholar 

  63. Munari Probst M, Roecker C (2012) Criteria for architectural integration of active solar systems IEA Task 41, Subtask A. Energy Proc 30:1195–1204

    Article  Google Scholar 

  64. Neagoe M, Visa I, Burduhos BG, Moldovan M (2014) Thermal load based adaptive tracking for flat plate solar collectors. Energy Proc 48:1401–1411

    Article  Google Scholar 

  65. Neagoe M, Visa I, Duta A, Cretescu N (2017) A new approach on the protection against overheating of flat plate solar-thermal collectors. In: Visa I, Duta A (eds) Nearly zero energy communities. Springer Proceedings in Energy, Heidelberg, pp 283–291

    Google Scholar 

  66. Nordell B, Ahlström A-K (2007) Freezing problems in borehole heat exchangers. In: Thermal energy storage for sustainable energy consumption, NATO Science Series (Mathematics, Physics and Chemistry). Springer, Dordrecht, pp 193–203

    Google Scholar 

  67. Pana I, Vitelaru C, Kiss A, Zoita NC, Dinu M, Braic M (2017) Design, fabrication and characterization of TiO2-SiO2 multilayer with tailored color glazing for thermal solar collectors. Mater Des 130:275–284

    Article  Google Scholar 

  68. Parameshwaran R, Kalaiselvam S, Harikrishnan S, Elayaperumal A (2012) Sustainable thermal energy storage technologies for buildings: a review. Renew Sustain Energy Rev 16:2394–2433

    Article  Google Scholar 

  69. Pardo García N, Zubi G, Pasaoglu G, Dufo-López R (2017) Photovoltaic thermal hybrid solar collector and district heating configurations for a Central European multi-family house. Energy Convers Manage 148:915–924

    Article  Google Scholar 

  70. Poppi S, Sommerfeldt N, Bales C, Madani H, Lundqvist P (2018) Techno-economic review of solar heat pump systems for residential heating applications. Renew Sustain Energy Rev 81(1):22–32

    Article  Google Scholar 

  71. Putrayudha AS, Kang EC, Evgueniy E, Libing Y, Lee EJ (2015) A study of photovoltaic/thermal (PVT)-ground source heat pump hybrid system by using fuzzy logic control. Appl Therm Eng 89:578–586

    Article  Google Scholar 

  72. Rad FM, Fung AS (2016) Solar community heating and cooling system with borehole thermal energy storage—review of systems. Renew Sustain Energy Rev 60:1550–1561

    Article  Google Scholar 

  73. Radiant Floor (2019) Overheating protection for solar collectors. www.radiantcompany.com/system/solar/heatdump/. Accessed May 2019

  74. Reda F (2015) Long term performance of different SAGSHP solutions for residential energy supply in Finland. Appl Energy 144:31–50

    Article  Google Scholar 

  75. Reda F, Laitinen A (2015) Different strategies for long term performance of SAGSHP to match residential energy requirements in a cold climate. Energy Build 86:557–572

    Article  Google Scholar 

  76. Resch K, Wallner GM (2009) Thermotropic layers for flat-plate collectors—a review of various concepts for overheating protection with polymeric materials. Sol Energy Mat Sol C 93:119–128

    Article  Google Scholar 

  77. Romanian Standards Association (1990) Sanitary installations. After supply for civil and industrial buildings. Main design specifications. Standardization Publishing House, Bucharest

    Google Scholar 

  78. Schuler A, Roecker C, Boudaden J, Oelhafen P, Scartezzini JL (2005) Potential of quarterwave interference stacks for colored thermal solar collectors. Sol Energy 79:122–130

    Article  Google Scholar 

  79. Sibbitt B, McClenahan D, Djebbar R, Thornton J, Wong B, Carriere J, Kokko J (2012) The performance of a high solar fraction seasonal storage district heating system—five years of operation. Energy Proc 30:856–865

    Article  Google Scholar 

  80. Slaman M, Griessen R (2009) Solar collector overheating protection. Sol Energy 83:982–987

    Article  Google Scholar 

  81. SoDa (2019) Solar radiation data. www.soda-pro.com. Accessed 29 May 2019

  82. Sommerfeldt N, Madani H (2016) Review of solar PV/thermal plus ground source heat pump systems for European multi-family houses. In: 11th ISES Eurosun Conference, Palma de Mallorca, Spain. https://doi.org/10.18086/eurosun.2016.08.15

  83. Streicher W (2000) Minimising the risk of water hammer and other problems at the beginning of stagnation of solar thermal plants—a theoretical approach. In: EUROSUN, Copenhagen

    Google Scholar 

  84. Thiesen S (2009) Simple and safe solar heating: a whole systems approach. Pac J Sci Technol 10(1):117–122

    Google Scholar 

  85. Threlkeld JL (1953) Solar energy as a potential heat source for the heat pump (PhD Thesis). University of Minnesota

    Google Scholar 

  86. UrbanSol+ (2014) Solar thermal systems in multifamily house renovation. http://www.urbansolplus.eu/en/downloads. Accessed 31 May 2019

  87. Visa I, Comsit M, Duta A (2014) Urban acceptance of facade integrated novel solar thermal collectors. Energy Proc 48:1429–1435

    Article  Google Scholar 

  88. Visa I, Comsit M, Moldovan M, Duta A (2014) Outdoor simultaneous testing of four types of photovoltaic tracked modules. J Renew Sustain Energy 6:4871003

    Article  Google Scholar 

  89. Visa I, Moldovan M, Comsit M, Duta A (2014) Improving the renewable energy mix in a building toward the nearly zero energy status. Energy Build 68:72–78

    Article  Google Scholar 

  90. Visa I, Duta A, Comsit M, Moldovan M, Ciobanu D, Saulescu R, Burduhos B (2015) Design and experimental optimisation of a novel flat plate solar thermal collector with trapezoidal shape for facades integration. Appl Therm Eng 90:432–443

    Article  Google Scholar 

  91. Visa I, Jaliu C, Duta A, Neagoe M, Comsit M, Moldovan M, Ciobanu D, Burduhos B, Saulescu R (2015) The role of mechanisms in sustainable energy systems. Transilvania University Pub. House, Brasov

    Google Scholar 

  92. Visa I, Comsit M, Duta A, Neagoe M, Moldovan M, Burduhos B, Perniu D, Enesca A, Isac L, Cosnita M, Totu I, Savvides I, Vassiliades C (2017) Novel solar thermal collectors/array with increased architectural acceptance for building integration. In: Building integration of solar thermal systems design and applications handbook, pp 373–391, COST Office

    Google Scholar 

  93. Visa I, Duta A, Moldovan M, Burduhos B (2017) Implementing renewable energy systems in nearly zero energy communities. In: Nearly zero energy communities. Springer, Berlin, pp 3–24

    Google Scholar 

  94. Visa I, Moldovan M, Comsit M, Duta A (2017) Infield output of a new solar-thermal Façade with increased architectural acceptance. Adv Mater - TechConnect Briefs 2:62–65

    Google Scholar 

  95. Visa I, Moldovan M, Comsit M, Neagoe M, Duta A (2017) Facades integrated solar-thermal collectors—challenges and solutions. Energy Proc 112:176–185

    Article  Google Scholar 

  96. Visa I, Duta A, Moldovan M (2019) Outdoor performance of a trapeze solar thermal collector for facades integration. Renew Energy 137:37–44

    Article  Google Scholar 

  97. Visa I, Moldovan M, Duta A (2019) Novel triangle flat plate solar thermal collector for facades integration. Renew Energy 143:252–262

    Article  Google Scholar 

  98. Weiss W (2003) Solar heating systems for houses. a design handbook for solar combi-systems. James & James, London

    Book  Google Scholar 

  99. Weiss W, Spörk-Dür M (2018) Solar heat worldwide, global market development and trends in 2017, Detailed market Figures in 2016. International Energy Agency Solar Heating & Cooling Programme. https://www.iea-shc.org/Data/Sites/1/publications/Solar-Heat-Worldwide-2018.pdf. Accessed 25 May 2019

  100. Weiss W, Spörk-Dür M (2018) Solar heat worldwide. The Solar heating and Cooling Programme, International Energy Agency. https://www.iea-shc.org/solar-overview. Accessed May 2019

  101. Weiss W, Spörk-Dür M (2019) Solar heat worldwide, global market development and trends in 2018, Detailed market figures 2017. International Energy Agency Solar Heating & Cooling Programme. https://www.iea-shc.org/Data/Sites/1/publications/Solar-Heat-Worldwide-2019.pdf. Accessed 27 Jul 2019

  102. Wijewardane S, Goswami DY (2012) A review on surface control of thermal radiation by paints and coatings for new energy applications. Renew Sustain Energ Rev 16:1863–1873

    Article  Google Scholar 

  103. Wu Y, Zheng W, Lin L, Qu Y, Lai F (2013) Colored solar selective absorbing coatings with metal Ti and dielectric AlN multilayer structure. Sol Energy Mat Sol C 115:145–150

    Article  Google Scholar 

  104. Yadav AK, Chandel SS (2013) Tilt angle optimization to maximize incident solar radiation: a review. Renew Sustain Energy Rev 23:503–513

    Article  Google Scholar 

  105. Yang R, Liu J, Lin L, Qu Y, Zheng W, Lai F (2016) Optical properties and thermal stability of colored solar selective absorbing coatings with double-layer antireflection coatings. Sol Energy 125:453–459

    Article  Google Scholar 

  106. Zhu D, Zhao S (2010) Chromaticity and optical properties of colored and black solar–thermal absorbing coatings. Sol Energ Mat Sol C 94:1630–1635

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Visa, I., Duta, A., Moldovan, M., Burduhos, B., Neagoe, M. (2020). Increasing the Solar Share for Domestic Hot Water, Heating and Cooling in the Built Environment. In: Solar Energy Conversion Systems in the Built Environment. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-34829-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34829-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34828-1

  • Online ISBN: 978-3-030-34829-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics