Skip to main content

Rigid Motion Estimation Using Line Observations

  • Chapter
  • First Online:
Geometric Algebra Applications Vol. II
  • 1032 Accesses

Abstract

This chapter is dedicated to the estimation of 3D Euclidean transformation using motor algebra. Two illustrations of estimation procedures are given: the first uses a batch approach for the estimation of the unknown 3D transformation between the coordinate reference systems of a robot neck, or arm, and of a digital camera. This problem is called the hand–eye problem and it is solved using a motion-of-lines model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shiu, Y. C., & Ahmad, S. (1989). Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form \(AX=XB\). IEEE Transactions on Robotics Automation, 5, 16–27.

    Article  Google Scholar 

  2. Tsai, R. Y., & Lenz, R. K. (1989). A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Transactions on Robotics and Automation, 5, 345–358.

    Article  Google Scholar 

  3. Wang, C. (1992). Extrinsic calibration of a vision sensor mounted on a robot. IEEE Transactions on Robotics and Automation, 161–175.

    Google Scholar 

  4. Chou, J. C. K., & Kamel, M. (1991). Finding the position and orientation of a sensor on a robot manipulator using quaternions. International Journal of Robotics Research, 10(3), 240–254.

    Article  Google Scholar 

  5. Gu, Y. L., & Luh, J. Y. S. (1987). Dual-number transformation and its applications to robotics. IEEE Journal of Robotics and Automation, RA–3(6), 615–623.

    Google Scholar 

  6. Li, M., & Betsis, D. (1995). Hand–eye calibration. In Proceedings of the International Conference on Computer Vision (pp. 40–46), Boston, June 20–23.

    Google Scholar 

  7. Horaud, R., & Dornaika, F. (1995). Hand-eye calibration. International Journal of Robotics Research, 14, 195–210.

    Article  Google Scholar 

  8. Chen, H. (1991). A screw motion approach to uniqueness analysis of head–eye geometry. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 145–151), Maui, Hawaii, June 3–6.

    Google Scholar 

  9. Sabata, R., & Aggarwal, J. K. (1991). Estimation of motion from a pair of range images: A review. CVGIP: Image Understanding, 54, 309–324.

    Google Scholar 

  10. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1994). Numerical recipes in C. New York: Cambridge University Press.

    MATH  Google Scholar 

  11. Sorenson, H. W. (1966). Kalman filtering techniques. In C. T. Leondes (Ed.), Advances in control systems theory and applications (Vol. 3, pp. 218–292). New York: Academic Press.

    Google Scholar 

  12. Bayro-Corrochano, E., Daniilidis, K., & Sommer, G. (1997). Hand-eye calibration in terms of motions of lines using geometric algebra. In 10th Scandinavian Conference on Image Analysis (Vol. I, pp. 397–404). Finland: Lappeenranta.

    Google Scholar 

  13. Daniilidis, K., & Bayro-Corrochano, E. (1996). The dual quaternion approach to hand–eye calibration. In IEEE Proceedings of the International Conference on Pattern Recognition (ICPR’96) (Vol. I, pp. 318–322). Vienna, Austria.

    Google Scholar 

  14. Maybeck, P. (1979). Stochastic models, estimation and control (Vol. 141-3). New York: Academic Press

    Google Scholar 

  15. Kunze, S. (1999). Ein Hand–Auge–System zur visuell basierten Lokalisierung und Identifikation von Objekten. Diploma Thesis, Christian–Albrechts–Universität zu Kiel, Institut für Informatik und Praktische Mathematik,

    Google Scholar 

  16. Bayro-Corrochano, E., & Zhang, Y. (2000). The motor extended Kalman filter: A geometric approach for 3D rigid motion estimation. Journal of Mathematical Imaging and Vision, 13(3), 205–227.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Bayro-Corrochano .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayro-Corrochano, E. (2020). Rigid Motion Estimation Using Line Observations. In: Geometric Algebra Applications Vol. II. Springer, Cham. https://doi.org/10.1007/978-3-030-34978-3_15

Download citation

Publish with us

Policies and ethics