Skip to main content

Numerical Study of SIF for a Crack in P265GH Steel by XFEM

  • Chapter
  • First Online:
Recent Advances in Mathematics and Technology

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 419 Accesses

Abstract

The analytical solving of fracture mechanics equations remains insufficient for complex mechanisms, hence the use of finite element numerical methods (FEM) . But the presence of singularities strongly degrades the FEM convergence and refining the mesh near the singularities is not enough to obtain an accurate solution, hence the use of the extended finite element method (XFEM) . With XFEM, the standard finite element approximation is locally enriched by enrichment functions to model the crack . The present work focuses on the numerical study of the defects harmfulness in the P265GH steel of a Compact Tension (CT) specimen. A stress intensity factor (SIF) was calculated by CAST3M code , using XFEM and the G-Theta method in the FEM; the objective is to simulate a CT sample with XFEM in 3D and to calculate the critical length of crack leading to the fracture as well as the evolution of stress concentration coefficient . An integration strategy and a definition of level sets have been proposed for cracks simulation in XFEM. A weak loading was considered to ensure elastic behavior . A comparative study of the numerical SIF values with the theory was performed. The result shows that XFEM is a precise tool for modeling crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fournier, D.: Analysis and Development of Refinement Methods hp in Space for the Neutrons Transport Equation, Doctoral Thesis University of Provence Marseille, (2011).

    Google Scholar 

  2. Shiozawa, K., Matsushita, H: Crack Initiation and Small Fatigue Crack Growth Behaviour of Beta Ti-15V-3Cr-3Al-3Sn Alloy, Proceeding Fatigue 96, G. LĂĽtjering, H. Nowack (Eds.), Berlin, 301, (1996).

    Google Scholar 

  3. Tokaji, K., Takafiji, S., Ohya, K., Kato, Y, Mori, K.,: Fatigue Behavior of Beta Ti-22V-4Al Alloy Subjected to Surface-Microstructural Modification, Journal of Materials, (2003).

    Google Scholar 

  4. Broek D. Elementary engineering fracture mechanics. Dordrecht: Kluwer, (1991).

    MATH  Google Scholar 

  5. Gdoutos EE. Fracture mechanics - an introduction. Dordrecht: Kluwer, (1991).

    MATH  Google Scholar 

  6. El Hakimi, A. Le Grognec, P., Hariri, S.: Numerical and analytical study of severity of cracks in cylindrical and spherical shells, Engineering Fracture Mechanics, 1027–1044, (2008).

    Google Scholar 

  7. J.M. Melenk, I. Babuska, Comput. Methods Appl. Mech. Eng. 139, 289–314, (1996).

    Article  Google Scholar 

  8. Pourmodheji, R., Mashayekhi, M.: Improvement of the extended finite element method for ductile crack growth. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran Materials Science and Engineering journal (2012) homepage http://www.elsevier.com/locate/msea.2012

  9. Belytschko, T., Black, T.: Int. J. Numer. Methods Eng. 45 601–620, (1999).

    Article  Google Scholar 

  10. Moes, N., Dolbow, J., Belytschko, T.: Int. J. Numer. Methods Eng. 46, 131–150, (1999).

    Article  Google Scholar 

  11. Dolbow, J.E.: Theoretical and applied mechanics, Ph.D. Thesis, Northwestern University, Evanston, IL, USA, (1999).

    Google Scholar 

  12. Moes, N., Sukumar, B., Moran, N., Belytschko, T.: Int. J. Numer. Methods Eng. 48, 1549–1570, (2000).

    Article  Google Scholar 

  13. Samaniego, E., Belytschko, T.: Continuum-discontinuum modelling of shear bands. International Journal for Numerical Methods in Engineering, Vol. 62 (13), 1857–1872, (2005).

    Article  MathSciNet  Google Scholar 

  14. Elguedj, T.: Simulation numérique de la propagation de fissure en fatigue par la méthode des éléments finis étendus: Prise en compte de la plasticité et du contact-frottement. INSA de Lyon, (2006).

    Google Scholar 

  15. Benoit, P., Tamara, Y., Thierry, C., Simatos, A.: Propagation de fissures tridimensionnelles dans des materiaux inelastiques avec XFEM dans CAST3M. 10e colloque national encalcul des structures, May 2011, Giens, France. pp.Cle USB,<hal-00592709>, (2011).

    Google Scholar 

  16. http://www-CAST3M.cea.fr/.

  17. Panetier, J.: Verification of stress intensity factors calculated by XFEM, PHD Thesis, The Normal School Of Cachan Superior, 36–40, (2010).

    Google Scholar 

  18. Barsoum: Further application of quadratic isoparametric elements to linear fracture mechanics of plate bending and general shells. Int. J. Num. Meth, Engng, 11, 167–169, (1976).

    Google Scholar 

  19. Singh, I.V., Mishra, B.K., Bhattacharya, S., Patil, R.U.: The numerical simulation of fatigue crack growth using extended finite element method, International Journal of Fatigue 36, 109–119, (2012).

    Article  Google Scholar 

  20. Kumar, S., Singh, I.V. and Mishra, B.K., A coupled finite element and element-free Galerkin approach for the simulation of stable crack growth in ductile materials, Theoretical and Applied Fracture Mechanics, 70, 49–58, (2014).

    Article  Google Scholar 

  21. Lahlou, M.: Numerical modeling and analytical validation of stress and stress intensity factor for SENT tensile sample of P265GH steel material, IPASJ International Journal of Mechanical Engineering (IIJME) Volume 3, Issue 4, ISSN 2321–6441, p 43, (2015).

    Google Scholar 

  22. Francois, D., Joly, L., La Ruprure Des MĂ©taux, Masson et Cte. p 65, (1972).

    Google Scholar 

  23. Peterson, R.E.: Stress concentration factors, USA, John Willey et Sons, p 317, (1974).

    Google Scholar 

  24. Francois, Jol C.E.: Stress in a plate due to the presence of cracks and sharp corners, Trans Instn Nav. Archit, Vol. 55, p 219, (1913).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salmi, H., El Had, K., El Bhilat, H., Hachim, A. (2020). Numerical Study of SIF for a Crack in P265GH Steel by XFEM. In: Dos Santos, S., Maslouhi, M., Okoudjou, K. (eds) Recent Advances in Mathematics and Technology. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-35202-8_6

Download citation

Publish with us

Policies and ethics