Skip to main content

Genetics and Neuroimaging in Schizophrenia

  • Chapter
  • First Online:
Neuroimaging in Schizophrenia

Abstract

Schizophrenia is a highly heritable disorder characterized by disruptions on the molecular, cellular, and neural circuit level that lead to the behaviors and cognitive impairments associated with the illness. This chapter evaluates how combining neuroimaging methods with genetic approaches such as studying single genes and polygenic risk scores, to genome-wide association study (GWAS) variants and gene expression networks, can provide valuable insight into both biomarkers of schizophrenia and underlying neural mechanisms. Discussions begin with the evolving focus on smaller studies and a few genetic variants to larger scale multi-variant initiatives, and the benefits and challenges of both. The implications of recent findings are explored from bottom-up studies investigating brain abnormalities associated with candidate and GWAS identified variants individually, as well as the utility of examining aggregated risk in the form of polygenic risk scores. Advancements with large collaborative efforts such as ENIGMA hold promise with their top-down work identifying genetic variants underlying variation in brain structure, function, and connectivity. However, further work is needed to clarify how this builds upon our knowledge of intermediate phenotypes and insight into schizophrenia pathology. Moving forward, this chapter highlights emerging work examining relationships between imaging phenotypes and gene expression patterns that take into account spatial variation across the brain. It also evaluates the importance and increasing prevalence of studies investigating schizophrenia from a neurodevelopmental standpoint, and provides a dimensional point of view by examining early and prodromal stages of psychosis. Finally, the overall limitations in imaging genetic research, including challenges, and the progress to overcome them are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano F, Caltagirone C, Spalletta G. Hippocampal volume reduction in first-episode and chronic schizophrenia. Neuroscientist. 2012;18(2):180–200.

    Article  PubMed  Google Scholar 

  • Anderson KM, Holmes AJ, Krienen FM, Choi EY, Reinen JM, Yeo BTT. Gene expression links functional networks across cortex and striatum. Nat Commun. 2018;9:1428. https://doi.org/10.1038/s41467-018-03811-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arslan A. Genes, brains, and behavior: imaging genetics for neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci. 2015;27:81–92. https://doi.org/10.1176/appi.neuropsych.13080185.

    Article  PubMed  Google Scholar 

  • Arslan A. Progress in neuropsychopharmacology & biological psychiatry imaging genetics of schizophrenia in the post-GWAS era. Prog Neuropsychopharmacol Biol Psychiatry. 2018a;80:155–65. https://doi.org/10.1016/j.pnpbp.2017.06.018.

    Article  CAS  PubMed  Google Scholar 

  • Arslan A. Mapping the schizophrenia genes by neuroimaging: the opportunities and the challenges. Int J Mol Sci. 2018b;19:E219. https://doi.org/10.3390/ijms19010219.

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ. Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res. 2014;357:477–92. https://doi.org/10.1007/s00441-014-1805-z.

    Article  CAS  PubMed  Google Scholar 

  • Bigdeli TB, Ripke S, Bacanu SA, Lee SH, Wray NR, Gejman PV, et al. Genome-wide association study reveals greater polygenic loading for schizophrenia in cases with a family history of illness. Am J Med Genet. 2016;171B:276–89. https://doi.org/10.1002/ajmg.b.32402.

    Article  CAS  PubMed  Google Scholar 

  • Birn RM, Bandettini PA. The effect of stimulus duty cycle and “off” duration on BOLD response linearity. Neuroimage. 2005;27:70–82. https://doi.org/10.1016/j.neuroimage.2005.03.040.

    Article  PubMed  Google Scholar 

  • Blokland GA, Zubicaray GI, McMahon KL, Wright MJ. Genetic and environmental influences on neuroimaging phenotypes: a meta-analytical perspective on twin imaging studies. Twin Res Hum Genet. 2012;15:351–71. https://doi.org/10.1017/thg.2012.11.Genetic.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blokland GAM, del Re EC, Mesholam-Gately RI, Jovicich J, Trampush JW, Keshavan MS, DeLisi LE, Walters JTR, Turner JA, Malhotra AK, Lencz T, Shenton ME, Voineskos AN, Rujescu D, Giegling I, Kahn RS, Roffman JL, Holt DJ, Ehrlich S, Kikinis Z, Dazzan P, Murray RM, Di Forti M, Lee J, Sim K, Lam M, Wolthusen RPF, de Zwarte SMC, Walton E, Cosgrove D, Kelly S, Maleki N, Osiecki L, Picchioni MM, Bramon E, Russo M, David AS, Mondelli V, Reinders AATS, Aurora Falcone M, Hartmann AM, Konte B, Morris DW, Gill M, Corvin AP, Cahn W, Ho NF, Liu JJ, Keefe RSE, Gollub RL, Manoach DS, Calhoun VD, Charles Schulz S, Sponheim SR, Goff DC, Buka SL, Cherkerzian S, Thermenos HW, Kubicki M, Nestor PG, Dickie EW, Vassos E, Ciufolini S, Marques TR, Crossley NA, Purcell SM, Smoller JW, van Haren NEM, Toulopoulou T, Donohoe G, Goldstein JM, Seidman LJ, McCarley RW, Petryshen TL. The genetics of endophenotypes of neurofunction to understand schizophrenia (GENUS) consortium: a collaborative cognitive and neuroimaging genetics project. Schizophr Res. 2018;195:306–17.

    Article  PubMed  Google Scholar 

  • Boedhoe PS, Schmaal L, Abe Y, Ameis SH, Arnold PD, Batistuzzo MC, et al. Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis. Am J Psychiatry. 2017;174:60–9. https://doi.org/10.1176/appi.ajp.2016.16020201.

    Article  PubMed  Google Scholar 

  • Bogdan R, Salmeron BJ, Carey CE, Agrawal A, Calhoun VD, Garavan H, et al. Review imaging genetics and genomics in psychiatry: a critical review of progress and potential. Biol Psychiatry. 2017;82:165–75. https://doi.org/10.1016/j.biopsych.2016.12.030.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bousman CA, Yung AR, Pantelis C, Ellis JA, Chavez RA, Nelson B, Lin A, Wood SJ, Amminger GP, Velakoulis D, Mcgorry PD, Everall IP, Foley DL. Effects of NRG1 and DAOA genetic variation on transition to psychosis in individuals at ultra-high risk for psychosis. Transl Psychiatry. 2013;3:e251. https://doi.org/10.1038/tp.2013.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bousman CA, Cropley V, Klauser P, Hess JL, Pereira A, Idrizi R, Bruggemann J. Neuregulin-1 (NRG1) polymorphisms linked with psychosis transition are associated with enlarged lateral ventricles and white matter disruption in schizophrenia. Psychol Med. 2018;48:801–9. https://doi.org/10.1017/S0033291717002173.

    Article  CAS  PubMed  Google Scholar 

  • Bray NJ, Hill MJ. Translating genetic risk loci into molecular risk mechanisms for schizophrenia. Schizophr Bull. 2015;42:5–8. https://doi.org/10.1093/schbul/sbv156.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bustamante ML, Herrera L, Gaspar PA, Nieto R, Maturana A, Villar MJ, et al. Shifting the focus toward rare variants in schizophrenia to close the gap from genotype to phenotype. Am J Med Genet. 2017;174B:663–70. https://doi.org/10.1002/ajmg.b.32550.

    Article  Google Scholar 

  • Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365–76. https://doi.org/10.1038/nrn3475.

    Article  CAS  PubMed  Google Scholar 

  • Cariaga-Martinez A, Alelú-Paz R. Rethinking the epigenetic framework to unravel the molecular pathology of schizophrenia. Int J Mol Sci. 2017;18(4):790. https://doi.org/10.3390/ijms18040790.

    Article  CAS  PubMed Central  Google Scholar 

  • Carter CS, Bearden CE, Bullmore ET, Geschwind DH, Glahn DC, Gur RE, et al. Review enhancing the informativeness and replicability of imaging genomics studies. Biol Psychiatry. 2017;82:157–64. https://doi.org/10.1016/j.biopsych.2016.08.019.

    Article  CAS  PubMed  Google Scholar 

  • Caseras X, Tansey K, Foley S, Linden D. Association between genetic risk scoring for schizophrenia and bipolar disorder with regional subcortical volumes. Transl Psychiatry. 2015;5:e692. https://doi.org/10.1038/tp.2015.195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev Cogn Neurosci. 2018;32:43–54. https://doi.org/10.1016/j.dcn.2018.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassoli JS, Guest PC, Malchow B, Schmitt A, Falkai P, Martins-de-Souza D. Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules. NPJ Schizophr. 2015;1:15034. https://doi.org/10.1038/npjschz.2015.34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H, Xiao X, Li M. The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions. Mol Psychiatry. 2017;22(7):944–53.

    Article  CAS  PubMed  Google Scholar 

  • Chavarria-siles I, White T, De Leeuw C, Goudriaan A, Lips E, Ehrlich S, et al. Myelination-related genes are associated with decreased white matter integrity in schizophrenia. Eur J Hum Genet. 2015;24(3):381–6. https://doi.org/10.1038/ejhg.2015.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chekouo T, Stingo FC, Guindani M, Do K-A. A Bayesian predictive model for imaging genetics with application to schizophrenia. Ann Appl Stat. 2016;10(3):1547–71. https://doi.org/10.1214/16-AOAS948.

    Article  Google Scholar 

  • Chen S, Velardez MO, Warot X, Yu ZX, Miller SJ, Cros D, Corfas G. Neuregulin 1-erbB signaling is necessary for normal myeli- nation and sensory function. J Neurosci. 2016;26:3079–86. https://doi.org/10.1523/JNEUROSCI.3785-05.2006.

    Article  CAS  Google Scholar 

  • Chen J, Rashid B, Yu Q, Liu J, Lin D, Du Y. Variability in resting state network and functional network connectivity associated with schizophrenia genetic risk: a pilot study. Front Neurosci. 2018;12:114. https://doi.org/10.3389/fnins.2018.00114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordova-Palomera A, Kaufmann T, Bettella F, Wang Y, Doan NT, Van Der Meer D, Westlye LT, et al. Effects of autozygosity and schizophrenia polygenic risk on cognitive and brain developmental trajectories. Eur J Hum Genet. 2018;26:1049–59. https://doi.org/10.1101/159939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousijn H, Rijpkema M, Harteveld A, et al. Schizophrenia risk gene ZNF804A does not influence macroscopic brain structure: an MRI study in 892 volunteers. Mol Psychiatry. 2012;17(12):1155–7. https://doi.org/10.1038/mp.2011.181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric disorders estimated from genome-wide ANPs. Nat Genet. 2013a;45:984–94. https://doi.org/10.1038/ng.2711.

    Article  CAS  PubMed Central  Google Scholar 

  • Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013b;381(9875):1371–9. https://doi.org/10.1016/S0140-6736(12)62129-1.

    Article  CAS  PubMed Central  Google Scholar 

  • Davis J, Eyre H, Jacka FN, Dodd S, Dean O, McEwen S, et al. A review of vulnerability and risks for schizophrenia: beyond the two hit hypothesis. Neurosci Biobehav Rev. 2016;65:185–94. https://doi.org/10.1016/j.neubiorev.2016.03.017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deans MPJ, Raval P, Sellers JK, Gatford JFN, Halai S, Duarte RRR, et al. Psychosis risk candidate ZNF804A localizes to synapses and regulates neurite formation and dendritic spine structure. Biol Psychiatry. 2016;82(1):49–61. https://doi.org/10.1016/j.biopsych.2016.08.038.

    Article  CAS  PubMed  Google Scholar 

  • Devor A, Andreassen O, Wang Y, Mäki-Marttunen T, Smeland O, Fan C-C, et al. Genetic evidence for role of integration of fast and slow neurotransmission in schizophrenia. Mol Psychiatry. 2017;22(6):792–801. https://doi.org/10.1038/mp.2017.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dima D, Breen G. Polygenic risk scores in imaging genetics: usefulness and applications. J Psychopharmacol. 2015;29(8):867–71. https://doi.org/10.1177/0269881115584470.

    Article  CAS  PubMed  Google Scholar 

  • Donohoe G, Rose E, Frodl T, et al. ZNF804A risk allele is associated with relatively intact gray matter volume in patients with schizophrenia. Neuroimage. 2011;54(3):2132–7. https://doi.org/10.1016/j.neuroimage.2010.09.089.

    Article  CAS  PubMed  Google Scholar 

  • Erk S, Mohnke S, Ripke S, Lett TA, Veer IM, Wackerhagen C, et al. Functional neuroimaging effects of recently discovered genetic risk loci for schizophrenia and polygenic risk profile in five RDoC subdomains. Transl Psychiatry. 2017;27(1):e997. https://doi.org/10.1038/tp.2016.272.

    Article  CAS  Google Scholar 

  • Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C, et al. Neural mechanisms of a genome-wide supported psychosis variant. Science. 2009;324:605. https://doi.org/10.1126/science.1167768.

    Article  CAS  PubMed  Google Scholar 

  • Esslinger C, Kirsch P, Haddad L, Mier D, Sauer C, Erk S, et al. NeuroImage cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neuroimage. 2011;54(3):2514–23. https://doi.org/10.1016/j.neuroimage.2010.10.012.

    Article  PubMed  Google Scholar 

  • Farrell MS, Werge T, Sklar P, Owen MJ, Ophoff RA, O’Donovan MC, Corvin A, Cichon S, Sullivan PF. Evaluating historical candidate genes for schizophrenia. Mol Psychiatry. 2015;20:555–62. https://doi.org/10.1038/mp.2015.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes CP, Westlye LT, Giddaluru S, Christoforou A, Kauppi K, Adolfsson R, Nilsson LG, Nyberg L, Lundervold AJ, Reinvang I, Steen VM, Le Hellard S, Espeseth T. Lack of association of the rs1344706 ZNF804A variant with cognitive functions and DTI indices of white matter microstructure in two in- dependent healthy populations. Psychiatry Res. 2014;222(1–2):60–6. https://doi.org/10.1016/j.pscychresns.2014.02.009.

    Article  PubMed  Google Scholar 

  • Flint J, Munafò MR. Candidate and non-candidate genes in behavior genetics. Curr Opin Neurobiol. 2013;23:57–61. https://doi.org/10.1016/j.conb.2012.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke B, Stein JL, Ripke S, Anttila V, Hibar DP, van Hulzen KJ, et al. Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nat Neurosci. 2016;19:420–31. https://doi.org/10.1038/nn.4228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French L, Gray C, Leonard G, et al. Early cannabis use, polygenic risk score for schizophrenia and brain maturation in adolescence. JAMA Psychiat. 2015;72:1002–11. https://doi.org/10.1001/jamapsychiatry.2015.1131.

    Article  Google Scholar 

  • Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19(11):1442–53. https://doi.org/10.1038/nn.4399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Ma Z, Hamilton C, Liang Z, Hou X, Ma X, et al. Genetic influences on resting-state functional networks: a twin study. Hum Brain Mapp. 2015;36:3959–72. https://doi.org/10.1002/hbm.22890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fusar-Poli P, Mcguire P, Borgwardt S. Mapping prodromal psychosis: a critical review of neuroimaging studies. Eur Psychiatry. 2012;27(3):181–91. https://doi.org/10.1016/j.eurpsy.2011.06.006.

    Article  CAS  PubMed  Google Scholar 

  • Fusar-Poli P, Borgwardt S, Bechdolf A, Addington J, Riecher-Rössler A, Schultze-Lutter F, et al. The psychosis high-risk state: a comprehensive state-of-the-art review. JAMA Psychiat. 2015;70(1):107–20. https://doi.org/10.1001/jamapsychiatry.2013.269.The.

    Article  Google Scholar 

  • Germine L, Robinson EB, Smoller JW, Calkins ME, Moore TM, Hakonarson H, et al. Association between polygenic risk for schizophrenia, neurocognition and social cognition across development. Transl Psychiatry. 2016;6(10):e924–7. https://doi.org/10.1038/tp.2016.147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaroli G, Bass N, Strydom A, Rantell K, McQuillin A. Does rare matter? Copy number variants at 16p11.2 and the risk of psychosis: a systematic review of literature and meta-analysis. Schizophr Res. 2014;159:340–6. https://doi.org/10.1016/j.schres.2014.09.025.

    Article  PubMed  Google Scholar 

  • Girgenti MJ, LoTurco JJ, Maher BJ. ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS One. 2012;7(2):e32404. https://doi.org/10.1371/journal.pone.0032404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glahn DC, Winkler A, Kochunov P, Almasy L, Duggirala R, Carless M, et al. Genetic control over the resting brain. Proc Natl Acad Sci U S A. 2010;107:1223–8. https://doi.org/10.1073/pnas.0909969107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Castro TB, Hernandez-Diaz Y, Juarez-Rojop IE, Lopez-Narvaez ML, Tovilla-Zarate CA, Fresan A. The role of a catechol-O-methyltransferase (COMT) Val158Met genetic polymorphism in schizophrenia: A systematic review and updated meta-analysis on 32,816 subjects. Neuromolecular Med. 2016;18:216–23. https://doi.org/10.1007/s12017-016-8392-z.

    Article  CAS  PubMed  Google Scholar 

  • Greenlaw K, Szefer E, Graham J, Lesperance M, Nathoo FS. A Bayesian group sparse multi-task regression model for imaging genetics arXiv: 1605. 02234v2 [stat. ME]; 2016.

    Google Scholar 

  • Gurung R, Prata DP. What is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review. Psychol Med. 2015;45(12):2461–80. https://doi.org/10.1017/S0033291715000537.

    Article  CAS  PubMed  Google Scholar 

  • Hagenaars SP, Harris SE, Davies G, et al. Shared genetic aetiology between cognitive functions and physical and mental health in UK biobank (N = 112 151) and 24 GWAS consortia. Mol Psychiatry. 2016;21:1624–32. https://doi.org/10.1038/mp.2015.225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall J, Whalley HC, Job DE, Baig BJ, Mcintosh AM, Evans KL, Thomson PA, Porteous DJ, Cunningham-Owens DG, Johnstone EC, Lawrie SM. A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat Neurosci. 2006;9:1477–8. https://doi.org/10.1038/nn1795.

    Article  CAS  PubMed  Google Scholar 

  • Hall J, Trent S, Thomas KL, O’Donovan MC, Owen MJ. Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiatry. 2015;77:52–8. https://doi.org/10.1016/j.biopsych.2014.07.011.

    Article  CAS  PubMed  Google Scholar 

  • Harari JH, Díaz-caneja CM. The association between gene variants and longitudinal structural brain changes in psychosis: a systematic review of longitudinal neuroimaging genetics studies. NPJ Schizophr. 2017;3:40. https://doi.org/10.1038/s41537-017-0036-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hariri AR, Mattay VS, Tessitore A, et al. Serotonin transporter genetic variation and the response of the human amygdala. Science. 2002;297:400–3. https://doi.org/10.1126/science.1071829.

    Article  CAS  PubMed  Google Scholar 

  • Harrisberger F, Smieskova R, Schmidt A, Lenz C, Walter A, Wittfeld K. Neuroscience and biobehavioral reviews BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2015;55:107–18. https://doi.org/10.1016/j.neubiorev.2015.04.017.

    Article  CAS  PubMed  Google Scholar 

  • Harrisberger F, Smieskova R, Vogler C, et al. Impact of polygenic schizophrenia-related risk and hippocampal volumes on the onset of psychosis. Transl Psychiatry. 2016;6(8):e868. https://doi.org/10.1038/tp.2016.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison PJ. Recent genetic findings in schizophrenia and their therapeutic relevance. J Psychopharmacol. 2015;29(2):85–96. https://doi.org/10.1177/0269881114553647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto R, Ohi K, Yamamori H, Yasuda Y, Fujimoto M. Imaging genetics and psychiatric disorders. Curr Mol Med. 2015;15(2):168–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawrylycz M, Lein E, Guillozet-Bongaarts A, Shen E, Ng L, Miller J, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9. https://doi.org/10.1038/nature11405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivières S, Jahanshad N, Toro R, Wittfeld K, Abramovic L, Andersson M, Aribisala BS, Armstrong NJ, Bernard M, Bohlken MM, Boks MP, Bralten J, Brown AA, Mallar Chakravarty M, Chen Q, Ching CRK, Cuellar-Partida G, den Braber A, Giddaluru S, Goldman AL, Grimm O, Guadalupe T, Hass J, Woldehawariat G, Holmes AJ, Hoogman M, Janowitz D, Jia T, Kim S, Klein M, Kraemer B, Lee PH, Olde Loohuis LM, Luciano M, Macare C, Mather KA, Mattheisen M, Milaneschi Y, Nho K, Papmeyer M, Ramasamy A, Risacher SL, Roiz-Santiañez R, Rose EJ, Salami A, Sämann PG, Schmaal L, Schork AJ, Shin J, Strike LT, Teumer A, van Donkelaar MMJ, van Eijk KR, Walters RK, Westlye LT, Whelan CD, Winkler AM, Zwiers MP, Alhusaini S, Athanasiu L, Ehrlich S, Hakobjan MMH, Hartberg CB, Haukvik UK, Heister AJGAM, Hoehn D, Kasperaviciute D, Liewald DCM, Lopez LM, Makkinje RRR, Matarin M, Naber MAM, McKay DR, Needham M, Nugent AC, Pütz B, Royle NA, Shen L, Sprooten E, Trabzuni D, van der Marel SSL, van Hulzen KJE, Walton E, Wolf C, Almasy L, Ames D, Arepalli S, Assareh AA, Bastin ME, Brodaty H, Bulayeva KB, Carless MA, Cichon S, Corvin A, Curran JE, Czisch M, de Zubicaray GI, Dillman A, Duggirala R, Dyer TD, Erk S, Fedko IO, Ferrucci L, Foroud TM, Fox PT, Fukunaga M, Gibbs JR, Göring HHH, Green RC, Guelfi S, Hansell NK, Hartman CA, Hegenscheid K, Heinz A, Hernandez DG, Heslenfeld DJ, Hoekstra PJ, Holsboer F, Homuth G, Hottenga J-J, Ikeda M, Jack CR, Jenkinson M, Johnson R, Kanai R, Keil M, Kent JW, Kochunov P, Kwok JB, Lawrie SM, Liu X, Longo DL, McMahon KL, Meisenzahl E, Melle I, Mohnke S, Montgomery GW, Mostert JC, Mühleisen TW, Nalls MA, Nichols TE, Nilsson LG, Nöthen MM, Ohi K, Olvera RL, Perez-Iglesias R, Pike GB, Potkin SG, Reinvang I, Reppermund S, Rietschel M, Romanczuk-Seiferth N, Rosen GD, Rujescu D, Schnell K, Schofield PR, Smith C, Steen VM, Sussmann JE, Thalamuthu A, Toga AW, Traynor BJ, Troncoso J, Turner JA, Valdés Hernández MC, van’t Ent D, van der Brug M, van der Wee NJA, van Tol M-J, Veltman DJ, Wassink TH, Westman E, Zielke RH, Zonderman AB, Ashbrook DG, Hager R, Lu L, McMahon FJ, Morris DW, Williams RW, Brunner HG, Buckner RL, Buitelaar JK, Cahn W, Calhoun VD, Cavalleri GL, Crespo-Facorro B, Dale AM, Davies GE, Delanty N, Depondt C, Djurovic S, Drevets WC, Espeseth T, Gollub RL, Ho B-C, Hoffmann W, Hosten N, Kahn RS, Le Hellard S, Meyer-Lindenberg A, Müller-Myhsok B, Nauck M, Nyberg L, Pandolfo M, Penninx BWJH, Roffman JL, Sisodiya SM, Smoller JW, van Bokhoven H, van Haren NEM, Völzke H, Walter H, Weiner MW, Wen W, White T, Agartz I, Andreassen OA, Blangero J, Boomsma DI, Brouwer RM, Cannon DM, Cookson MR, de Geus EJC, Deary IJ, Donohoe G, Fernández G, Fisher SE, Francks C, Glahn DC, Grabe HJ, Gruber O, Hardy J, Hashimoto R, Hulshoff Pol HE, Jönsson EG, Kloszewska I, Lovestone S, Mattay VS, Mecocci P, McDonald C, McIntosh AM, Ophoff RA, Paus T, Pausova Z, Ryten M, Sachdev PS, Saykin AJ, Simmons A, Singleton A, Soininen H, Wardlaw JM, Weale ME, Weinberger DR, Adams HHH, Launer LJ, Seiler S, Schmidt R, Chauhan G, Satizabal CL, Becker JT, Yanek L, van der Lee SJ, Ebling M, Fischl B, Longstreth WT, Greve D, Schmidt H, Nyquist P, Vinke LN, van Duijn CM, Xue L, Mazoyer B, Bis JC, Gudnason V, Seshadri S, Ikram MA, Martin NG, Wright MJ, Schumann G, Franke B, Thompson PM, Medland SE. Common genetic variants influence human subcortical brain structures. Nature. 2015;520(7546):224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibar DP, Adams HHH, Jahanshad N, Chauhan G, Stein JL, Hofer E, et al. Novel genetic loci associated with hippocampal volume. Nat Commun. 2017;8:13624. https://doi.org/10.1038/ncomms13624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill MJ, Bray NJ. Evidence that schizophrenia risk variation in the ZNF804A gene exerts its effects during fetal brain development. Am J Psychiatry. 2012;169:1301–8. https://doi.org/10.1176/appi.aip.2012.11121845.

    Article  PubMed  Google Scholar 

  • Hill MJ, Jeffries AR, Dobson RJ, Price J, Bray NJ. Knockdown of the psychosis susceptibility gene ZNF804A alters expression of genes involved in cell adhesion. Hum Mol Genet. 2012;21(5):1018–24. https://doi.org/10.1093/hmg/ddr532.

    Article  CAS  PubMed  Google Scholar 

  • Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry. 2011;68:128–37. https://doi.org/10.1001/archgenpsychiatry.2010.199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong CJ, Liou YJ, Tsai SJ. Effects of BDNF polymorphisms on brain function and behavior in health and disease. Brain Res Bull. 2011;86:287–97. https://doi.org/10.1016/j.brainresbull.2011.08.019.

    Article  CAS  PubMed  Google Scholar 

  • Hoogman M, Bralten J, Hibar DP, Mennes M, Zwiers MP, Schweren LS, van Hulzen KJ, Medland SE, Shumskaya E, Jahanshad N, et al. Subcortical brain volume differences of participants with ADHD across the lifespan: an ENIGMA collaboration. Lancet Psychiatry. 2017;4:310–9. https://doi.org/10.1016/S2215-0366(17)30049-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horváth S, Janka Z, Mirnics K. Analyzing schizophrenia by DNA microarrays. Biol Psychiatry. 2011;69:157–62. https://doi.org/10.1016/j.biopysch.2010.07.017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Howes OD, Mccutcheon R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry. 2017;7(2):e1024–11. https://doi.org/10.1038/tp.2016.278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howes OD, McCutcheon R, Owen MJ, Murray R. The role of genes, stress and dopamine in the development of schizophrenia. Biol Psychiatry. 2017;81(1):9–20. https://doi.org/10.1016/j.biopsych.2016.07.014.

    Article  CAS  PubMed  Google Scholar 

  • Hubbard L, Tansey KE, Rai D, et al. Evidence of common genetic overlap between schizophrenia and cognition. Schizophr Bull. 2016;42:832–42. https://doi.org/10.1093/schbul/sbv168.

    Article  PubMed  Google Scholar 

  • Ikeda M, Aleksic B, Kinoshita Y, Okochi T, Kawashima K, Kushima I, et al. Genome-wide association study of schizophrenia in a Japanese population. Biol Psychiatry. 2011;69:472–8. https://doi.org/10.1016/j.biopsych.2010.07.010.

    Article  PubMed  Google Scholar 

  • Ikuta T, Peters BD, Guha S, John M, Karlsgodt KH, Lencz T, et al. A schizophrenia risk gene, ZNF804A, is associated with brain white matter microstructure. Schizophr Res. 2014;155(1–3):15–20. https://doi.org/10.1016/j.schres.2014.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Insel TR. Rethinking schizophrenia. Nature. 2010;468:187–93.

    Article  CAS  PubMed  Google Scholar 

  • Jansen AG, Mous SE, White T, Posthuma D, Polderman TJ. What twin studies tell us about the heritability of brain development, morphology, and function: a review. Neuropsychol Rev. 2015;25:27–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang HJ, et al. Spatio-temporal transcriptome of the human brain. Nature. 2012;478:483–9.

    Article  CAS  Google Scholar 

  • Kang M, Zhang C, Chun H-W, Ding C, Liu C, Gao J. eQTL epistasis: detecting epistatic effects and inferring hierarchical relationships of genes in biological pathways. Bioinformatics. 2015;31(5):656–64.

    Article  CAS  PubMed  Google Scholar 

  • Kauppi K, Westlye LT, Tesli M, et al. Polygenic risk for schiz- ophrenia associated with working memory-related prefrontal brain activation in patients with schizophrenia and healthy controls. Schizophr Bull. 2014;41:736–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keri S, Kiss I, Kelemen O. Effects of a neuregulin 1 variant on conversion to schizophrenia and schizophreniform disorder in people at high risk for psychosis. Mol Psychiatry. 2009;14:118–9.

    Article  CAS  PubMed  Google Scholar 

  • Kuswanto CN, Sum MY, Qiu A, Sitoh Y, Liu J, Sim K. The impact of genome wide supported MicroRNA- 137 ( MIR137 ) risk variants on frontal and striatal White matter integrity, neurocognitive functioning, and negative symptoms in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2015;168B(5):317–26. https://doi.org/10.1002/ajmg.b.32314.

    Article  CAS  PubMed  Google Scholar 

  • Lancaster T, Doherty J, Linden DE, Hall J. Imaging genetics of schizophrenia. In: Bigos KL, Hariri AR, Weinberger DR, editors. Neuroimaging genetics: principles and practices. Oxford, New York: Oxford University Press; 2016a.

    Google Scholar 

  • Lancaster TM, Ihssen N, Brindley LM, et al. Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals. Hum Brain Mapp. 2016b;37:491–500.

    Article  PubMed  Google Scholar 

  • Lancaster TM, Dimitriadis SL, Tansey KE, Perry G, Ihssen N, Jones DK, et al. Structural and functional neuroimaging of polygenic risk for schizophrenia: a recall-by-genotype—based approach. Schizophr Bull. 2018;(April):1–3. https://doi.org/10.1093/schbul/sby037.

  • Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014;95:5–23. https://doi.org/10.1016/j.ajhg.2014.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee PH, Baker JT, Holmes AJ, Jahanshad N, Ge T, Jung J, et al. Partitioning heritability analysis reveals a shared genetic basis of brain anatomy and schizophrenia. 2016;(August):1680–9. https://doi.org/10.1038/mp.2016.164.

  • Lett TA, Chakavarty MM, Felsky D, Brandl EJ, Tiwari AK, Gonçalves VF, Rajji TK, Daskalakis ZJ, Meltzer HY, Lieberman JA, Lerch JP, Mulsant BH, Kennedy JL, Voineskos AN. The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia. Mol Psychiatry. 2013;18(4):443–50.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Huang L, Wang J, Su B, Luo X-J. No association between schizophrenia susceptibility variants and macroscopic structural brain volume variation in healthy subjects. Am J Med Genet B Neuropsychiatr Genet. 2015;171B(2):160–8.

    Article  PubMed  Google Scholar 

  • Lidow MS. Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Brain Res Rev. 2003;43:70–84.

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhang X, Cui Y, Qin W, Tao Y, Li J. Polygenic risk for schizophrenia influences cortical gyrification in 2 independent general populations. Schizophr Bull. 2017;43(3):673–80. https://doi.org/10.1093/schbul/sbw051.

    Article  PubMed  Google Scholar 

  • Luykx JJ, Broersen JL, Leeuw MD. Neuroscience and biobehavioral reviews the DRD2 rs1076560 polymorphism and schizophrenia-related intermediate phenotypes: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;74:214–24. https://doi.org/10.1016/j.neubiorev.2017.01.006.

    Article  CAS  PubMed  Google Scholar 

  • Mallas E, Carletti F, Chaddock CA, Kalidindi S, Bramon E, Murray R, Barker GJ (2017) The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder, vol 1, pp. 479–488. https://doi.org/10.1111/gbb.12355.

  • Manrique-Garcia E, Zammit S, Dalman C, Hemmingsson T, Andreasson S, Allebeck P. Cannabis, schizophrenia and other non-affective psychoses: 35 years of follow-up of a population-based cohort. Psychol Med. 2012;42(6):1321–8.

    Article  CAS  PubMed  Google Scholar 

  • Marenco S, Weinberger DR. The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol. 2000;12:501–27.

    Article  CAS  PubMed  Google Scholar 

  • Mathalon DH, Sullivan EV, Lim KO, Pfefferbaum A. Progres- sive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry. 2001;58:148–57.

    Article  CAS  PubMed  Google Scholar 

  • McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–76.

    Article  PubMed  Google Scholar 

  • Meltzer HY, Stahl SM. The dopamine hypothesis of schizophrenia: a review. Schizophrenia bulletin. Bethesda: National Institute of Mental Health; 1976. https://doi.org/10.1093/schbul/2.1.19.

    Book  Google Scholar 

  • Mendrek A, Mancini-Marïe A. Sex/gender differences in the brain and cognition in schizophrenia. Neurosci Biobehav Rev. 2016;67:57–78. https://doi.org/10.1016/j.neubiorev.2015.10.013.

    Article  PubMed  Google Scholar 

  • Meyer-Lindenberg A. Imaging genetics of schizophrenia. Transl Res. 2010:449–56.

    Google Scholar 

  • Millan MJ, Andrieux A, Bartzokis G, Cadenhead K, Dazzan P. Altering the course of schizophrenia: progress and perspectives. Nat Publ Group. 2016;15(7):485–515. https://doi.org/10.1038/nrd.2016.28.

    Article  CAS  Google Scholar 

  • Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012;37:4–15.

    Article  CAS  PubMed  Google Scholar 

  • Mohnke S, Erk S, Schnell K, Schutz C, Romanczuk-Seiferth N, Grimm O, et al. Further evidence for the impact of a genome-wide-supported psychosis risk variant in ZNF804A on the Theory of Mind Network. Neuropsychopharmacology. 2014;39:1196–205.

    Article  CAS  PubMed  Google Scholar 

  • Mulle JG. The 3q29 deletion confers >40-fold increase in risk for schizophrenia. Mol Psychiatry. 2015;20:1028–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy SE, Norbury R, Godlewska BR, Cowen PJ, Mannie ZM, Harmer CJ, et al. The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: a meta-analysis. Mol Psychiatry. 2013;18:512–20.

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S, et al. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology. 2012;62:1574–83.

    Article  CAS  PubMed  Google Scholar 

  • Neilson E, Bois C, Gibson J, Duff B, Watson A, Roberts N, et al. Effects of environmental risks and polygenic loading for schizophrenia on cortical thickness. Schizophr Res. 2017;184:128–36. https://doi.org/10.1016/j.schres.2016.12.011.

    Article  PubMed  Google Scholar 

  • Oertel-knöchel V, Lancaster TM, Knöchel C, Stäblein M, Storchak H, Reinke B, et al. Clinical Schizophrenia risk variants modulate white matter volume across the psychosis spectrum: evidence from two independent cohorts YNICL. Neuroimage. 2015;7:764–70. https://doi.org/10.1016/j.nicl.2015.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohi K, Hashimoto R, Ikeda M, et al. Genetic risk variants of schizophrenia associated with left superior temporal gyrus volume. Cortex. 2014;58:23–6.

    Article  PubMed  Google Scholar 

  • Olabi B, et al. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatr. 2011;70:88–96.

    Article  Google Scholar 

  • Ortega MC, Bribian A, Peregrin S, Gil MT, Marin O, de Castro F. Neuregulin-1/ErbB4 signaling controls the migration of oligodendrocyte precursor cells during development. Exp Neurol. 2012;235:610–20.

    Article  CAS  PubMed  Google Scholar 

  • Owens SF, Picchioni MM, Ettinger U, et al. Prefrontal deviations in function but not volume are putative endophenotypes for schizophrenia. Brain. 2012;135:2231–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Papiol S, Mitjans M, Assogna F, et al. Polygenic determinants of white matter volume derived from GWAS lack reproducibility in a replicate sample. Transl Psychiatry. 2014;4:e362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papiol S, Popovic D, Keeser D, Hasan A, Degenhardt F, Rossner MJ, et al. Polygenic risk has an impact on the structural plasticity of hippocampal sub fi elds during aerobic exercise combined with cognitive remediation in multi-episode schizophrenia. Nat Publ Group. 2017;7(6):e1159. https://doi.org/10.1038/tp.2017.131.

    Article  CAS  Google Scholar 

  • Patel S, Park MTM, The Alzheimer’s Disease Neuroimaging Initiative, Chakravarty MM, Knight J. Gene prioritization for imaging genetics studies using gene ontology and a stratified false discovery rate approach. Front Neuroinform. 2016;10:14. https://doi.org/10.3389/fninf.2016.00014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearlson GD, Calhoun VD, Liu J. An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p- ICA to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders. Front Genet. 2015;6:276. https://doi.org/10.3389/fgene.2015.00276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pergola G, Di Carlo P, Ambrosio ED, Gelao B, Fazio L, Papalino M, et al. DRD2 co-expression network and a related polygenic index predict imaging, behavioral and clinical phenotypes linked to schizophrenia. Nat Publ Group. 2017;7(1):e1006–8. https://doi.org/10.1038/tp.2016.253.

    Article  CAS  Google Scholar 

  • Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, Jack CR, Jagust WJ, Shaw LM, Toga AW, Trojanowski JQ, Weiner MW. Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology. 2010;74(3):201–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pettersson-Yeo W, Benetti S, Marquand AF, Dell’acqua F, Williams SC, Allen P, et al. Using genetic, cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level. Psychol Med. 2013;43(12):2547–62. https://doi.org/10.1017/S003329171300024X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47:702–9.

    Article  CAS  PubMed  Google Scholar 

  • Powell F, LoCastro E, Acosta D, Ahmed M, O’Donoghue S, Forde N, Cannon D, Scanlon C, Rao T, McDonald C, Raj A. Age-related changes in topological degradation of white matter networks and gene expression in chronic schizophrenia. Brain Connect. 2017;7(9):574–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Psaty BM, O’Donnell CJ, Gudnason V, et al. Cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium: design of prospective meta- analyses of genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet. 2009;2:73–80.

    Google Scholar 

  • Raab K, Kirsch P, Mier D. Neuroscience and biobehavioral reviews understanding the impact of 5-HTTLPR, antidepressants, and acute tryptophan depletion on brain activation during facial emotion processing: a review of the imaging literature. Neurosci Biobehav Rev. 2016;71:176–97. https://doi.org/10.1016/j.neubiorev.2016.08.031.

    Article  CAS  PubMed  Google Scholar 

  • Rasetti R, Weinberger DR. Intermediate phenotypes in psychiatric disorders. Curr Opin Genet Dev. 2011;21:340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reus LM, Shen X, Gibson J, et al. Association of polygenic risk for major psychiatric illness with subcortical vol- umes and white matter integrity in UK biobank. Sci Rep. 2017;7:42140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards AL, Jones L, Moskvina V, Kirov G, Gejman PV, Levinson DF, et al. Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain. Mol Psychiatry. 2012;17(2):193–201. https://doi.org/10.1038/mp.2011.11.

    Article  CAS  PubMed  Google Scholar 

  • Richiardi J, Altmann A, Milazzo A-C, Chang C, Mallar Chakravarty M, Banaschewski T, et al. Correlated gene expression supports synchronous activity in brain networks. Science. 2015;348:1241–4. https://doi.org/10.1126/science.1255905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romme IAC, De Reus MA, Ophoff RA, Kahn RS, Van Den Heuvel MP. Connectome disconnectivity and cortical gene expression in patients with schizophrenia. Biol Psychiatry. 2016;81(6):495–502. https://doi.org/10.1016/j.biopsych.2016.07.012.

    Article  CAS  PubMed  Google Scholar 

  • Satterthwaite TD, Wolf DH, Calkins ME, Vandekar SN, Erus G, Ruparel K, et al. Structural brain abnormalities in youth with psychosis spectrum symptoms. JAMA Psychiat. 2016;73(5):515–24. https://doi.org/10.1001/jamapsychiatry.2015.3463.

    Article  Google Scholar 

  • Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia- associated genetic loci. Nature. 2014;511:421–7.

    Article  CAS  PubMed Central  Google Scholar 

  • Schmaal L, Veltman DJ, van Erp TG, Sämann PG, Frodl T, Jahanshad N, Loehrer E, Tiemeier H, Hofman A, Niessen WJ, Vernooij MW, Ikram MA, Wittfeld K, Grabe HJ, Block A, Hegenscheid K, Völzke H, Hoehn D, Czisch M, Lagopoulos J, Hatton SN, Hickie IB, Goya-Maldonado R, Krämer B, Gruber O, Couvy-Duchesne B, Rentería ME, Strike LT, Mills NT, de Zubicaray GI, McMahon KL, Medland SE, Martin NG, Gillespie NA, Wright MJ, Hall GB, MacQueen GM, Frey EM, Carballedo A, van Velzen LS, van Tol MJ, van der Wee NJ, Veer IM, Walter H, Schnell K, Schramm E, Normann C, Schoepf D, Konrad C, Zurowski B, Nickson T, McIntosh AM, Papmeyer M, Whalley HC, Sussmann JE, Godlewska BR, Cowen PJ, Fischer FH, Rose M, Penninx BW, Thompson PM, Hibar DP. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA major depressive disorder working group. Mol Psychiatry. 2015;21(6):806–12. https://doi.org/10.1038/mp.2015.69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt A, Rujescu D, Gawlik M, Hasan A, Hashimoto K, Iceta S. Consensus paper of the WFSBP Task Force on Biological Markers: criteria for biomarkers and endophenotypes of schizophrenia part II: cognition, neuroimaging and genetics. World J Biol Psychiatry. 2016;17(6):406–28.

    Article  PubMed  Google Scholar 

  • Schneider M, Debbané M, Bassett AS, Chow EWC, Fung WLA, van den Bree MBM, et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the international consortium on brain and behavior in 22q11.2 deletion syndrome. Am J Psychiatry. 2014;171:627–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schork AJ, Wang Y, Thompson WK, Dale AM, Andreassen OA. New statistical approaches exploit the polygenic architecture of schizophrenia—implications for the underlying neurobiology. Curr Opin Neurobiol. 2016;50:89–98. https://doi.org/10.1016/j.conb.2015.10.008.New.

    Article  Google Scholar 

  • Schumann G, Loth E, Banaschewski T, et al. The IMAGEN study: reinforcement-related behavior in normal brain function and psychopathology. Mol Psychiatry. 2010;15:1128–39.

    Article  CAS  PubMed  Google Scholar 

  • Sebat J, Malhotra D. CNVs: harbinger of a rare variant revolution in psychiatric genetics. Cell. 2013;148:1223–41.

    Google Scholar 

  • Sebat J, Levy DL, McCarthy SE. Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet. 2009;25:528–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidman LJ, Giuliano AJ, Meyer EC, Addington J, Cadenhead KS, Cannon TD, McGlashan TH, Perkins DO, Tsuang MT, Walker EF, Woods SW, Bearden CE, Christensen BK, Hawkins K, Heaton R, Keefe RS, Heinssen R, Cornblatt BA, North American Prodrome Longitudinal Study (NAPLS) Group. Neuropsychology of the prodrome to psychosis in the NAPLS consortium: relationship to family history and conversion to psychosis. Arch Gen Psychiatry. 2010;67(6):578–88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177–83. https://doi.org/10.1038/nature16549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeland OB, Wang Y, Frei O, Li W, Hibar DP, Franke B, Bettella F, Witoelar A, Djurovic S, Chen CH, Thompson PM, Dale AM, Andreassen OA. Genetic overlap between schizophrenia and volumes of hippocampus, putamen, and intracranial volume indicates shared molecular genetic mechanisms. Schizophr Bull. 2017;sbx148. https://doi.org/10.1093/schbul/sbx148

  • Smieskova R, Marmy J, Schmidt A, Bendfeldt K, Walter M, Lang UE. Do subjects at clinical high risk for psychosis differ from those with a genetic high risk?—a systematic review of structural and functional brain abnormalities; 2013. pp. 467–481.

    Google Scholar 

  • Sprooten E, McIntosh AM, Lawrie SM, et al. An investigation of a genomewide supported psychosis variant in ZNF804A and white matter integrity in the human brain. Magn Reson Imaging. 2012;30(10):1373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stedehouder J, Kushner SA. Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Mol Psychiatry. 2017;22(1):4–12. https://doi.org/10.1038/mp.2016.147.

    Article  CAS  PubMed  Google Scholar 

  • Stein JL, Medland SE, Vasquez AA, et al. Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet. 2012;44:552–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stingo FC, Guindani M, Vannucci M, Calhoun VD. An integrative Bayesian modeling approach to imaging genetics. J Am Stat Assoc. 2014;108(503):876–91. https://doi.org/10.1080/01621459.2013.804409.

    Article  CAS  Google Scholar 

  • Studerus E, Ramyead A. Prediction of transition to psychosis in patients with a clinical high risk for psychosis: a systematic review of methodology and reporting. 2017. pp. 1163–1178. https://doi.org/10.1017/S0033291716003494.

  • Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60:1187–92. https://doi.org/10.1001/archpsyc.60.12.1187.

    Article  PubMed  Google Scholar 

  • Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet. 2012;13:537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sussman D, Leung RC, Chakravarty MM, Lerch JP, Taylor MJ. Developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy. Brain Behav. 2016;6(4):e00457. https://doi.org/10.1002/brb3.457.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao R, Cousijn H, Jaffe AE, Burnet PW, Edwards F, Eastwood SL, et al. Expression of ZNF804A in human brain and alterations in schizophrenia, bipolar disorder, and major depressive disorder: a novel transcript fetally regulated by the psychosis risk variant rs1344706. JAMA Psychiat. 2014;71:1112–20.

    Article  CAS  Google Scholar 

  • Terwisscha van Scheltinga AF, Bakker SC, van Haren NE, et al. Genetic schizophrenia risk variants jointly modulate total brain and white matter volume. Biol Psychiatry. 2013;73(6):525–31.

    Article  PubMed  Google Scholar 

  • Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, Toro R, Jahanshad N, Schumann G, Franke B, Wright MJ, Martin NG, Agartz I, Alda M, Alhusaini S, Almasy L, Almeida J, Alpert K, Andreasen NC, Andreassen OA, Apostolova LG, Appel K, Armstrong NJ, Aribisala B, Bastin ME, Bauer M, Bearden CE, Bergmann Ø, Binder EB, Blangero J, Bockholt HJ, Bøen E, Bois C, Boomsma DI, Booth T, Bowman IJ, Bralten J, Brouwer RM, Brunner HG, Brohawn DG, Buckner RL, Buitelaar J, Bulayeva K, Bustillo JR, Calhoun VD, Cannon DM, Cantor RM, Carless MA, Caseras X, Cavalleri GL, Mallar Chakravarty M, Chang KD, Ching CRK, Christoforou A, Cichon S, Clark VP, Conrod P, Coppola G, Crespo-Facorro B, Curran JE, Czisch M, Deary IJ, de Geus EJC, den Braber A, Delvecchio G, Depondt C, de Haan L, de Zubicaray GI, Dima D, Dimitrova R, Djurovic S, Dong H, Donohoe G, Duggirala R, Dyer TD, Ehrlich S, Ekman CJ, Elvsåshagen T, Emsell L, Erk S, Espeseth T, Fagerness J, Fears S, Fedko I, Fernández G, Fisher SE, Foroud T, Fox PT, Francks C, Frangou S, Frey EM, Frodl T, Frouin V, Garavan H, Giddaluru S, Glahn DC, Godlewska B, Goldstein RZ, Gollub RL, Grabe HJ, Grimm O, Gruber O, Guadalupe T, Gur RE, Gur RC, Göring HHH, Hagenaars S, Hajek T, Hall GB, Hall J, Hardy J, Hartman CA, Hass J, Hatton SN, Haukvik UK, Hegenscheid K, Heinz A, Hickie IB, Ho B-C, Hoehn D, Hoekstra PJ, Hollinshead M, Holmes AJ, Homuth G, Hoogman M, Hong LE, Hosten N, Hottenga J-J, Hulshoff Pol HE, Hwang KS, Jack CR, Jenkinson M, Johnston C, Jönsson EG, Kahn RS, Kasperaviciute D, Kelly S, Kim S, Kochunov P, Koenders L, Krämer B, Kwok JBJ, Lagopoulos J, Laje G, Landen M, Landman BA, Lauriello J, Lawrie SM, Lee PH, Le Hellard S, Lemaître H, Leonardo CD, Li C-s, Liberg B, Liewald DC, Liu X, Lopez LM, Loth E, Lourdusamy A, Luciano M, Macciardi F, Machielsen MWJ, MacQueen GM, Malt UF, Mandl R, Manoach DS, Martinot J-L, Matarin M, Mather KA, Mattheisen M, Mattingsdal M, Meyer-Lindenberg A, McDonald C, McIntosh AM, McMahon FJ, McMahon KL, Meisenzahl E, Melle I, Milaneschi Y, Mohnke S, Montgomery GW, Morris DW, Moses EK, Mueller BA, Maniega SM, Mühleisen TW, Müller-Myhsok B, Mwangi B, Nauck M, Nho K, Nichols TE, Nilsson L-G, Nugent AC, Nyberg L, Olvera RL, Oosterlaan J, Ophoff RA, Pandolfo M, Papalampropoulou-Tsiridou M, Papmeyer M, Paus T, Pausova Z, Pearlson GD, Penninx BW, Peterson CP, Pfennig A, Phillips M, Pike GB, Poline J-B, Potkin SG, Pütz B, Ramasamy A, Rasmussen J, Rietschel M, Rijpkema M, Risacher SL, Roffman JL, Roiz-Santiañez R, Romanczuk-Seiferth N, Rose EJ, Royle NA, Rujescu D, Ryten M, Sachdev PS, Salami A, Satterthwaite TD, Savitz J, Saykin AJ, Scanlon C, Schmaal L, Schnack HG, Schork AJ, Schulz SC, Schür R, Seidman L, Shen L, Shoemaker JM, Simmons A, Sisodiya SM, Smith C, Smoller JW, Soares JC, Sponheim SR, Sprooten E, Starr JM, Steen VM, Strakowski S, Strike L, Sussmann J, Sämann PG, Teumer A, Toga AW, Tordesillas-Gutierrez D, Trabzuni D, Trost S, Turner J, van den Heuvel M, van der Wee NJ, van Eijk K, van Erp TGM, van Haren NEM, van’t Ent D, van Tol M-J, Valdés Hernández MC, Veltman DJ, Versace A, Völzke H, Walker R, Walter H, Wang L, Wardlaw JM, Weale ME, Weiner MW, Wen W, Westlye LT, Whalley HC, Whelan CD, White T, Winkler AM, Wittfeld K, Woldehawariat G, Wolf C, Zilles D, Zwiers MP, Thalamuthu A, Schofield PR, Freimer NB, Lawrence NS, Drevets W. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 2014;8(2):153–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thurin K, Rasetti R, Sambataro F, Safrin M, Chen Q, Callicott JH, et al. Effects of ZNF804A on neurophysiologic measures of cognitive control. Mol Psychiatry. 2013;18:852–4.

    Article  CAS  PubMed  Google Scholar 

  • Toulopoulou T, van Haren N, Zhang X, et al. Reciprocal causation models of cognitive vs volumetric cerebral intermediate phenotypes for schizophrenia in a pan-European twin cohort. Mol Psychiatry. 2015;20:1482.

    Article  CAS  PubMed  Google Scholar 

  • Trotman HD, Holtzman CW, Ryan AT, Shapiro DI, MacDonald AN, Goulding SM, et al. The development of psychotic disorders in adolescence: a potential role for hormones. Horm Behav. 2013;64(2):411–9. https://doi.org/10.1016/j.yhbeh.2013.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Auwera S, Wittfeld K, Homuth G, Teumer A, Hegenscheid K, Grabe HJ. No association between polygenic risk for schizophrenia and brain volume in the general population. Biol Psychiatry. 2015;78:e41–2.

    Article  PubMed  Google Scholar 

  • Van der Auwera S, Wittfeld K, Shumskaya E, Bralten J, Zwiers MP, Onnink AMH, et al. Predicting brain structure in population-based samples with biologically informed genetic scores for schizophrenia; 2017. pp. 324–32. https://doi.org/10.1002/ajmg.b.32519.

  • Van Dongen J, Boomsma DI. The evolutionary paradox and the missing heritability of schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:122–36.

    Article  CAS  PubMed  Google Scholar 

  • Vita A, De Peri L, Deste G, Sacchetti E. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry. 2012;2:e190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voineskos AN, Lerch JP, Felsky D, et al. The ZNF804A gene: characterization of a novel neural risk mechanism for the major psychoses. (2011). Neuropsychopharmacology. 2011;36:1871–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voineskos AN, Felsky D, Wheeler AL, Rotenberg DJ, Levesque M, Patel S, et al. Limited evidence for association of genome-wide schizophrenia risk variants on cortical neuroimaging phenotypes. Schizophr Bull. 2015:sbv180. https://doi.org/10.1093/schbul/sbv180.

  • Walker EF, Trotman HD, Goulding SM, et al. Developmental mechanisms in the prodrome to psychosis. Dev Psychopathol. 2013;25(4 Pt 2):1585–600. https://doi.org/10.1017/S0954579413000783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walter H, Schnell K, Erk S, Arnold C, Kirsch P, Esslinger C, et al. Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Mol Psychiatry. 2011;16:462–70.

    Article  CAS  PubMed  Google Scholar 

  • Walton E, Turner J, Gollub RL, et al. Cumulative genetic risk and prefrontal activity in patients with schizophrenia. Schizophr Bull. 2013;39:703–11.

    Article  PubMed  Google Scholar 

  • Walton E, Geisler D, Lee PH, et al. Prefrontal inefficiency is associated with polygenic risk for schizophrenia. Schizophr Bull. 2014;40:1263–71.

    Article  PubMed  Google Scholar 

  • Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11:333. https://doi.org/10.1038/nmeth.2810.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Jianping S, Bryan G, Tian G, Hibar Derrek P, Greenwood Celia MT, Qiu A, The Alzheimer’s Disease Neuroimaging Initiative. A set-based mixed effect model for gene-environment interaction and its application to neuroimaging phenotypes. Front Neurosci. 2017;11:191. https://doi.org/10.3389/fnins.2017.00191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Li M, Kang Z, Li L, Diao F, Zhang R, et al. ZNF804A rs1344706 is associated with cortical thickness, surface area, and cortical volume of the Unmedicated first episode schizophrenia and healthy controls. Am J Med Genet B Neuropsychiatr Genet. 2015;168B(4):265–73. https://doi.org/10.1002/ajmg.b.32308.

    Article  CAS  PubMed  Google Scholar 

  • Weirauch MT. Gene coexpression networks for the analysis of DNA microarray data. Applied statistics for network biology: methods in systems biology; 2011.

    Google Scholar 

  • Witte AV, Flöel A. Effects of COMT polymorphisms on brain function and behavior in health and disease. Brain Res Bull. 2012;88:418–28.

    Article  CAS  PubMed  Google Scholar 

  • Wolf DH, Satterthwaite TD, Calkins ME, Ruparel K, Elliott MA, Hopson RD, et al. Functional neuroimaging abnormalities in psychosis spectrum youth. JAMA Psychiat. 2015;72:456–65. https://doi.org/10.1001/jamapsychiatry.2014.3169.

    Article  Google Scholar 

  • Wood JD, Bonath F, Kumar S, Ross CA, Cunliffe VT. Disrupted-in-schizophrenia 1 and neuregulin 1 are required for the specification of oligodendrocytes and neurones in the zebrafish brain. Hum Mol Genet. 2009;18:391–404.

    Article  CAS  PubMed  Google Scholar 

  • Wray NR, Gottesman II. Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front Genet. 2012;3:118. https://doi.org/10.3389/fgene.2012.00118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H, Liu J, Sui J, Pearlson G, Calhoun VD. A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia. Front Hum Neurosci. 2010;4:192.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristotle N. Voineskos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jacobs, G.R., Voineskos, A.N. (2020). Genetics and Neuroimaging in Schizophrenia. In: Kubicki, M., Shenton, M. (eds) Neuroimaging in Schizophrenia . Springer, Cham. https://doi.org/10.1007/978-3-030-35206-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35206-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35205-9

  • Online ISBN: 978-3-030-35206-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics