Skip to main content

LumNet: A Deep Neural Network for Lumbar Paraspinal Muscles Segmentation

  • Conference paper
  • First Online:
AI 2019: Advances in Artificial Intelligence (AI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11919))

Included in the following conference series:

Abstract

Lumber paraspinal muscles (LPM) segmentation is of essential importance in predicting response to treatment of low back pain. To date, all LPM segmentation methods are manually based instead of automatic. Manual segmentation of LPM requires vast radiological knowledge and experience. Moreover, the manual segmentation usually induces subjective variance. Therefore, an automatic segmentation is desireable. It is challenging to achieve automatic segmentation mainly because the ambiguous boundary of the LPM can be very difficult to locate. In this paper, we present a novel encoder-decoder and attention based deep convolutional neural network (CNN) to address this problem. With the help of skip connections, the encoder-decoder structure can capture both shadow and deep features which represent local and global information. Pre-trained VGG11 in ImageNet performed as encoder. In the decoder part, an attention block is applied to recalibrate the input feature. With the help of attention block, meaningful features are highlighted while irrelevant features are suppressed. To fully evaluate the performance of our proposed network, we construct the first large-scale LPM segmentation dataset with 1080 images and its segmentation masks. Experimental results show that our proposed network can not only achieve a good LPM segmentation result with a high dice score of 0.94 but also outperforms other state-of-the-art segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balagué, F., Mannion, A.F., Pellisé, F., Cedraschi, C.: Non-specific low back pain. Lancet 379(9814), 482–491 (2012)

    Article  Google Scholar 

  2. Shahidi, B., et al.: Contribution of lumbar spine pathology and age to paraspinal muscle size and fatty infiltration. Spine 42(8), 616–623 (2017)

    Article  Google Scholar 

  3. Beneck, G.J., Kulig, K.: Multifidus atrophy is localized and bilateral in active persons with chronic unilateral low back pain. Arch. Phys. Med. Rehabil. 93(2), 300–306 (2012)

    Article  Google Scholar 

  4. Battaglia, P.J., Maeda, Y., Welk, A., Hough, B., Kettner, N.: Reliability of the Goutallier classification in quantifying muscle fatty degeneration in the lumbar multifidus using magnetic resonance imaging. J. Manipulative Physiol. Ther. 37(3), 190–197 (2014)

    Article  Google Scholar 

  5. Ranson, C., Burnett, A., O’sullivan, P., Batt, M., Kerslake, R.: The lumbar paraspinal muscle morphometry of fast bowlers in cricket. Clin. J. Sport Med. 18(1), 31–37 (2008)

    Article  Google Scholar 

  6. Engstrom, C.M., Fripp, J., Jurcak, V., Walker, D.G., Salvado, O., Crozier, S.: Segmentation of the quadratus lumborum muscle using statistical shape modeling. J. Magn. Reson. Imaging 33(6), 1422–1429 (2011)

    Article  Google Scholar 

  7. Xiao, Y., Fortin, M., Battié, M.C., Rivaz, H.: Population-averaged MRI atlases for automated image processing and assessments of lumbar paraspinal muscles. Eur. Spine J. 27, 2442–2448 (2018)

    Article  Google Scholar 

  8. Mikheev, A., Nevsky, G., Govindan, S., Grossman, R., Rusinek, H.: Fully automatic segmentation of the brain from T1-weighted mri using bridge burner algorithm. J. Magn. Reson. Imaging 27(6), 1235–1241 (2008)

    Article  Google Scholar 

  9. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  10. Szegedy, C.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  11. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks, vol. 7. arXiv preprint arXiv:1709.01507 (2017)

  15. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  17. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  18. Shen, L., Sun, G., Huang, Q., Wang, S., Lin, Z., Wu, E.: Multi-level discriminative dictionary learning with application to large scale image classification. IEEE Trans. Image Process. 24(10), 3109–3123 (2015)

    Article  MathSciNet  Google Scholar 

  19. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 807–814 (2010)

    Google Scholar 

  20. Paszke, A.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  21. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561 (2015)

  22. Chang, H.-H., Zhuang, A.H., Valentino, D.J., Chu, W.-C.: Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 47(1), 122–135 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingdi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y. et al. (2019). LumNet: A Deep Neural Network for Lumbar Paraspinal Muscles Segmentation. In: Liu, J., Bailey, J. (eds) AI 2019: Advances in Artificial Intelligence. AI 2019. Lecture Notes in Computer Science(), vol 11919. Springer, Cham. https://doi.org/10.1007/978-3-030-35288-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35288-2_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35287-5

  • Online ISBN: 978-3-030-35288-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics