Skip to main content

Exploration of the Bidirectionality of Obesity and Depression by Means of the Neuropsychological Model of Obesity Genesis

  • Chapter
  • First Online:
Pathophysiology of Obesity-Induced Health Complications

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 19))

Abstract

Obesity and depression are co-morbid disorders that place pervasive and significant burdens on individuals, their families and society. The neuropsychological model of obesity offers a framework for understanding their etiology, bidirectionality and impact on neurological, gastrointestinal, endocrine, cardiovascular and psychosocial systems. In recent years, research has focused on the role of stress as a perpetuator of this disabling cycle. Though complex and difficult to treat, the multi-systemic nature of these combined disorders offer several entry points for intervention and management. Several evidence-based treatment options are offered that, particularly when attempted concurrently, relieve suffering and promote health and wellbeing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haslam D (2007) Obesity: a medical history. Obes Rev 8:31–36. https://doi.org/10.1111/j.1467-789X.2007.00314.x

    Article  Google Scholar 

  2. World Health Organization (2018) Obesity and overweight

    Google Scholar 

  3. Janssen I (2013) The public health burden of obesity in Canada. Can J Diabetes 37:90–96. https://doi.org/10.1016/j.jcjd.2013.02.059

    Article  PubMed  Google Scholar 

  4. Low S, Chin MC, Deurenberg-Yap M (2009) Review on epidemic of obesity. Ann Acad Med Singapore 38:57–59

    PubMed  Google Scholar 

  5. Kwan A, Corscadden L (2012) Obesity in Canada. Can J Diabetes 35:152. https://doi.org/10.1016/s1499-2671(11)52056-8

    Article  Google Scholar 

  6. (2018) Overweight and obese adults, 2018. Ottawa

    Google Scholar 

  7. Bancej C, Jayabalasingham B, Wall RW et al (2015) Evidence brief—trends and projections of obesity among Canadians. Heal Promot Chronic Dis Prev Canada 35:109–112. https://doi.org/10.24095/hpcdp.35.7.02

    Article  CAS  Google Scholar 

  8. Reddy MS (2010) Depression: the disorder and the burden. Indian J Psychol Med 32:1–2. https://doi.org/10.4103/0253-7176.70510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tam T (2019) The chief public health officer’s report on the state of public health in Canada 2018: preventing problematic substance use in youth. Ottawa

    Google Scholar 

  10. Trautmann S, Rehm J, Wittchen H (2016) The economic costs of mental disorders. EMBO Rep 17:1245–1249. https://doi.org/10.15252/embr.201642951

    Article  CAS  Google Scholar 

  11. Sagar R, Gupta T (2018) Psychological aspects of obesity in children and adolescents. Indian J Pediatr 85:554–559

    Article  Google Scholar 

  12. Jauch-chara K, Oltmanns KM (2014) Obesity: a neuropsychological disease? Systematic review and neuropsychological model. Prog Neurobiol 114:84–101. https://doi.org/10.1016/j.pneurobio.2013.12.001

    Article  PubMed  Google Scholar 

  13. McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185. https://doi.org/10.1016/j.ejphar.2007.11.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mcewen BS (2009) Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci 1032:1–7. https://doi.org/10.1196/annals.1314.001

    Article  Google Scholar 

  15. Kyrou I, Tsigos C (2009) Stress hormones: physiological stress and regulation of metabolism. Curr Opin Pharmacol 9:787–793. https://doi.org/10.1016/j.coph.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  16. Tomiyama AJ (2019) Stress and Obesity. Annu Rev Psychol 70:703–718

    Article  Google Scholar 

  17. Warne JP (2009) Shaping the stress response: interplay of palatable food choices, glucocorticoids, insulin and abdominal obesity. Mol Cell Endocrinol 300:137–146. https://doi.org/10.1016/j.mce.2008.09.036

    Article  CAS  Google Scholar 

  18. Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468. https://doi.org/10.1016/j.tins.2008.06.006

    Article  CAS  PubMed  Google Scholar 

  19. Tsigos C, Chrousos GP (2002) Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53:865–871. https://doi.org/10.1016/S0022-3999(02)00429-4

    Article  PubMed  Google Scholar 

  20. Pariante CM (2003) Depression, stress and the adrenal axis. J Neuroendocrinol 15:811–812. https://doi.org/10.1046/j.1365-2826.2003.01058.x

  21. Stephens MAC, Wand G (2012) Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol Res 34:468–483

    PubMed  PubMed Central  Google Scholar 

  22. Risbrough VB, Stein MB (2006) Role of corticotropin releasing factor in anxiety disorders: a translational research perspective. Horm Behav 50:550–561. https://doi.org/10.1016/j.yhbeh.2006.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sominsky L, Spencer SJ (2014) Eating behavior and stress: a pathway to obesity. Front Psychol 5:1–8. https://doi.org/10.3389/fpsyg.2014.00434

    Article  Google Scholar 

  24. Wang L, Goebel-Stengel M, Yuan P-Q et al (2017) Corticotropin-releasing factor overexpression in mice abrogates sex differences in body weight, visceral fat, and food intake response to a fast and alters levels of feeding regulatory hormones. Biol Sex Differ 8:2. https://doi.org/10.1186/s13293-016-0122-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharma R, Banerji MA (2012) Corticotropin releasing factor (CRF) and obesity. Maturitas 72:1–3. https://doi.org/10.1016/j.maturitas.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  26. Kempke S, Luyten P, De Coninck S et al (2015) Effects of early childhood trauma on hypothalamic–pituitary–adrenal (HPA) axis function in patients with Chronic Fatigue Syndrome. Psychoneuroendocrinology 52:14–21. https://doi.org/10.1016/j.psyneuen.2014.10.027

    Article  CAS  PubMed  Google Scholar 

  27. von Baes CW, Martins CMS, Tofoli SM de, Juruena MF (2014) Early life stress in depressive patients: HPA axis response to GR and MR agonist. Front Psychiatry 5:2. https://doi.org/10.3389/fpsyt.2014.00002

  28. Shea A, Walsh C, MacMillan H, Steiner M (2005) Child maltreatment and HPA axis dysregulation: relationship to major depressive disorder and post traumatic stress disorder in females. Psychoneuroendocrinology 30:162–178. https://doi.org/10.1016/j.psyneuen.2004.07.001

    Article  CAS  PubMed  Google Scholar 

  29. Gallagher JP, Orozco-Cabal LF, Liu J, Shinnick-Gallagher P (2008) Synaptic physiology of central CRH system. Eur J Pharmacol 583:215–225. https://doi.org/10.1016/J.EJPHAR.2007.11.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saal D, Dong Y, Bonci A, Malenka RC (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577–582. https://doi.org/10.1016/S0896-6273(03)00021-7

    Article  CAS  PubMed  Google Scholar 

  31. Maroun M (2006) Stress reverses plasticity in the pathway projecting from the ventromedial prefrontal cortex to the basolateral amygdala. Eur J Neurosci 24:2917–2922. https://doi.org/10.1111/j.1460-9568.2006.05169.x

    Article  PubMed  Google Scholar 

  32. Vucetic Z, Reyes TM (2010) Central dopaminergic circuitry controlling food intake and reward: implications for the regulation of obesity. Wiley Interdiscip Rev Syst Biol Med 2:577–593. https://doi.org/10.1002/wsbm.77

    Article  CAS  PubMed  Google Scholar 

  33. Massey PV, Bashir ZI (2007) Long-term depression: multiple forms and implications for brain function. Trends Neurosci 30:176–184. https://doi.org/10.1016/j.tins.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  34. Cooke SF (2006) Plasticity in the human central nervous system. Brain 129:1659–1673. https://doi.org/10.1093/brain/awl082

    Article  CAS  PubMed  Google Scholar 

  35. Wise RA (2004) Dopamine and food reward: back to the elements. Am J Physiol Integr Comp Physiol 286:R13–R13. https://doi.org/10.1152/ajpregu.00590.2003

    Article  CAS  Google Scholar 

  36. Baik J-H (2013) Dopamine signaling in food addiction: role of dopamine D2 receptors. BMB Rep 46:519–526. https://doi.org/10.5483/BMBRep.2013.46.11.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494. https://doi.org/10.1038/nrn1406

    Article  CAS  PubMed  Google Scholar 

  38. Wise RA (2006) Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc B Biol Sci 361:1149–1158. https://doi.org/10.1098/rstb.2006.1854

    Article  CAS  Google Scholar 

  39. Yau YHC, Potenza MN (2013) Stress and eating behaviors. Minerva Endocrinol 38:255–267

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Isabel A, Rudá G, Braz F et al (2019) Body composition, biochemical, behavioral and molecular alterations in overfed rats after chronic exposure to SSRI. Behav Brain Res 356:62–70. https://doi.org/10.1016/j.bbr.2018.08.007

    Article  CAS  Google Scholar 

  41. Tomycz N, Oh MY, Whiting D (2015) Future targets. 38:1–9. https://doi.org/10.3171/2015.3.FOCUS1542.Disclosure

  42. Ulrich-Lai YM, Fulton S, Wilson M et al (2015) Stress exposure, food intake and emotional state. Stress 18:381–399. https://doi.org/10.3109/10253890.2015.1062981

    Article  PubMed  PubMed Central  Google Scholar 

  43. Osdoba KE, Mann T, Redden JP, Vickers Z (2015) Using food to reduce stress: effects of choosing meal components and preparing a meal. Food Qual Prefer 39:241–250. https://doi.org/10.1016/j.foodqual.2014.08.001

    Article  Google Scholar 

  44. Lenoir M, Serre F, Cantin L, Ahmed SH (2007) Intense sweetness surpasses cocaine reward. PLoS ONE 2:e698. https://doi.org/10.1371/journal.pone.0000698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Volkow ND, Wang G-J, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15:37–46. https://doi.org/10.1016/j.tics.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  46. Bhatnagar S, Vining C, Iyer V, Kinni V (2006) Changes in hypothalamic-pituitary-adrenal function, body temperature, body weight and food intake with repeated social stress exposure in rats. J Neuroendocrinol 18:13–24. https://doi.org/10.1111/j.1365-2826.2005.01375.x

    Article  CAS  PubMed  Google Scholar 

  47. Foster MT, Solomon MB, Huhman KL, Bartness TJ (2006) Social defeat increases food intake, body mass, and adiposity in Syrian hamsters. Am J Physiol Integr Comp Physiol 290:R1284–R1293. https://doi.org/10.1152/ajpregu.00437.2005

    Article  CAS  Google Scholar 

  48. Wilson ME, Fisher J, Fischer A et al (2008) Quantifying food intake in socially housed monkeys: social status effects on caloric consumption. Physiol Behav 94:586–594. https://doi.org/10.1016/j.physbeh.2008.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pecoraro N, Reyes F, Gomez F et al (2004) Chronic stress Promotes palatable feeding, which reduces signs of stress: feed forward and feedback effects of chronic stress. Endocrinology 145:3754–3762. https://doi.org/10.1210/en.2004-0305

    Article  CAS  PubMed  Google Scholar 

  50. Pandya M, Altinay M, Malone DA Jr, Anand A (2012) Where in the brain is depression? Curr Psychiatry Rep 14:634–642. https://doi.org/10.1007/s11920-012-0322-7

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gluck ME, Alonso-Alonso M, Piaggi P et al (2015) Neuromodulation targeted to the prefrontal cortex induces changes in energy intake and weight loss in obesity. Obesity 23:2149–2156. https://doi.org/10.1002/oby.21313

    Article  PubMed  Google Scholar 

  52. Le DSN, Pannacciulli N, Chen K et al (2006) Less activation of the left dorsolateral prefrontal cortex in response to a meal: a feature of obesity. Am J Clin Nutr 84:725–731. https://doi.org/10.1093/ajcn/84.4.725

    Article  CAS  PubMed  Google Scholar 

  53. Qin S, Hermans EJ, van Marle HJF et al (2009) Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol Psychiatry 66:25–32. https://doi.org/10.1016/j.biopsych.2009.03.006

    Article  PubMed  Google Scholar 

  54. Jagust W, Harvey D, Mungas D, Haan M (2005) Central obesity and the aging brain. JAMA Neurol 62:1545–1548. https://doi.org/10.1001/archneur.62.10.1545

    Article  Google Scholar 

  55. Stillman CM, Weinstein AM, Marsland AL et al (2017) Body-brain connections: the effects of obesity and behavioral interventions on neurocognitive aging. Front Aging Neurosci 9:115. https://doi.org/10.3389/fnagi.2017.00115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Palkovits M (2003) Hypothalamic regulation of food intake. Ideggyogy Sz 56:288–302

    PubMed  Google Scholar 

  57. Epstein FH, Cryer PE, Gerich JE (1985) Glucose counter regulation, hypoglycemia, and intensive insulin therapy in diabetes mellitus. N Engl J Med 313:232–241. https://doi.org/10.1056/NEJM198507253130405

    Article  Google Scholar 

  58. Tesfaye N, Seaquist ER (2010) Neuroendocrine responses to hypoglycemia. Ann N Y Acad Sci 1212:12–28. https://doi.org/10.1111/j.1749-6632.2010.05820.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McCrimmon RJ (2012) Update in the CNS response to hypoglycemia. J Clin Endocrinol Metab 97:1–8. https://doi.org/10.1210/jc.2011-1927

    Article  CAS  PubMed  Google Scholar 

  60. Sprague JE, Arbeláez AM (2011) Glucose counterregulatory responses to hypoglycemia. Pediatr Endocrinol Rev 9:463–73; quiz 474–475

    Google Scholar 

  61. Diggs-Andrews KA, Zhang X, Song Z et al (2010) Brain insulin action regulates hypothalamic glucose sensing and the counterregulatory response to hypoglycemia. Diabetes 59:2271–2280. https://doi.org/10.2337/db10-0401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schmoller A, Hass T, Strugovshchikova O et al (2010) Evidence for a relationship between body mass and energy metabolism in the human brain. J Cereb Blood Flow Metab 30:1403–1410. https://doi.org/10.1038/jcbfm.2010.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Peters A, Schweiger U, Pellerin L et al (2004) The selfish brain: competition for energy resources. Neurosci Biobehav Rev 28:143–180. https://doi.org/10.1016/j.neubiorev.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  64. Peters A, Pellerin L, Dallman M et al (2007) Causes of obesity: Looking beyond the hypothalamus. Prog Neurobiol 81:61–88. https://doi.org/10.1016/j.pneurobio.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  65. Miki T, Liss B, Minami K et al (2001) ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4:507–512. https://doi.org/10.1038/87455

    Article  CAS  PubMed  Google Scholar 

  66. Knapen J, Vancampfort D, Moriën Y, Marchal Y (2015) Exercise therapy improves both mental and physical health in patients with major depression. Disabil Rehabil 37:1490–1495. https://doi.org/10.3109/09638288.2014.972579

    Article  PubMed  Google Scholar 

  67. Russo-Neustadt A, Beard RC, Cotman CW (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21:679–682. https://doi.org/10.1016/S0893-133X(99)00059-7

    Article  CAS  PubMed  Google Scholar 

  68. Duman CH, Schlesinger L, Russell DS, Duman RS (2008) Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res 1199:148–158. https://doi.org/10.1016/j.brainres.2007.12.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ransford CP (1982) A role for amines in the antidepressant effect of exercise: a review. Med Sci Sports Exerc 14:1–10

    Article  CAS  Google Scholar 

  70. O’Reilly GA, Cook L, Spruijt-Metz D, Black DS (2014) Mindfulness-based interventions for obesity-related eating behaviours: a literature review. Obes Rev 15:453–461. https://doi.org/10.1111/obr.12156

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dalen J, Smith BW, Shelley BM et al (2010) Pilot study: mindful eating and living (MEAL): weight, eating behavior, and psychological outcomes associated with a mindfulness-based intervention for people with obesity. Complement Ther Med 18:260–264. https://doi.org/10.1016/j.ctim.2010.09.008

    Article  PubMed  Google Scholar 

  72. Grossman P, Niemann L, Schmidt S, Walach H (2004) Mindfulness-based stress reduction and health benefits. J Psychosom Res 57:35–43. https://doi.org/10.1016/S0022-3999(03)00573-7

    Article  PubMed  Google Scholar 

  73. Teasdale JD, Segal ZV, Williams JMG et al (2000) Prevention of relapse/recurrence in major depression by mindfulness-based cognitive therapy. J Consult Clin Psychol 68:615–623. https://doi.org/10.1037/0022-006X.68.4.615

    Article  CAS  PubMed  Google Scholar 

  74. Dunn C, Haubenreiser M, Johnson M et al (2018) Mindfulness approaches and weight loss, weight maintenance, and weight regain. Curr Obes Rep 7:37–49. https://doi.org/10.1007/s13679-018-0299-6

    Article  PubMed  Google Scholar 

  75. Carrière K, Khoury B, Günak MM, Knäuper B (2018) Mindfulness-based interventions for weight loss: a systematic review and meta-analysis. Obes Rev 19:164–177. https://doi.org/10.1111/obr.12623

    Article  PubMed  Google Scholar 

  76. Kim S-H, Chung J-H, Kim T-H et al (2018) The effects of repetitive transcranial magnetic stimulation on eating behaviors and body weight in obesity: a randomized controlled study. Brain Stimul 11:528–535. https://doi.org/10.1016/j.brs.2017.11.020

    Article  PubMed  Google Scholar 

  77. Bou Khalil R, El Hachem C (2014) Potential role of repetitive transcranial magnetic stimulation in obesity. Eat Weight Disord Stud Anorexia, Bulim Obes 19:403–407. https://doi.org/10.1007/s40519-013-0088-x

    Article  Google Scholar 

  78. Teng S, Guo Z, Peng H et al (2017) High-frequency repetitive transcranial magnetic stimulation over the left DLPFC for major depression: Session-dependent efficacy: a meta-analysis. Eur Psychiatry 41:75–84. https://doi.org/10.1016/j.eurpsy.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  79. Du L, Liu H, Du W et al (2018) Stimulated left DLPFC-nucleus accumbens functional connectivity predicts the anti-depression and anti-anxiety effects of rTMS for depression. Transl Psychiatry 7:3. https://doi.org/10.1038/s41398-017-0005-6

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yadollahpour A, Hosseini SA, Shakeri A (2016) rTMS for the treatment of depression: a comprehensive review of effective protocols on right DLPFC. Int J Ment Health Addict 14:539–549. https://doi.org/10.1007/s11469-016-9669-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit S. Tappia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramjiawan, M., Tappia, P.S. (2020). Exploration of the Bidirectionality of Obesity and Depression by Means of the Neuropsychological Model of Obesity Genesis. In: Tappia, P., Ramjiawan, B., Dhalla, N. (eds) Pathophysiology of Obesity-Induced Health Complications. Advances in Biochemistry in Health and Disease, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-35358-2_10

Download citation

Publish with us

Policies and ethics