Skip to main content

Gate-Defined Quantum Dots: Fundamentals and Applications

  • Chapter
  • First Online:
Quantum Dot Optoelectronic Devices

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 27))

Abstract

Gate-defined quantum dots (GDQD) have gained rapid developments due to the progresses of modern nanofabrication technologies in recent years. Because of their high tunability, COMS compatibility, and long coherence time, gate-defined quantum dots are considered as one of the most likely candidates for quantum computation. This chapter reviews the fundamental concepts, recent developments, and applications of gate-defined quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kouwenhoven, L., & Marcus, C. (1998). Quantum dots. Physics World, 11, 35–40.

    Article  CAS  Google Scholar 

  2. van der Wiel, W. G., et al. (2002). Electron transport through double quantum dots. Reviews of Modern Physics, 75, 1.

    Article  CAS  Google Scholar 

  3. Ralph, D. C., Black, C. T., & Tinkham, M. (1995). Spectroscopic measurements of discrete electronic states in single metal particles. Physical Review Letters, 74, 3241–3244.

    Article  CAS  Google Scholar 

  4. Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933.

    Article  CAS  Google Scholar 

  5. Cleuziou, J. P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T., & Monthioux, M. (2006). Carbon nanotube superconducting quantum interference device. Nature Nanotechnology, 1, 53–59.

    Article  CAS  Google Scholar 

  6. De Franceschi, S., Kouwenhoven, L., Schönenberger, C., & Wernsdorfer, W. (2010). Hybrid superconductor–quantum dot devices. Nature Nanotechnology, 5, 703.

    Article  CAS  Google Scholar 

  7. Loss, D., & DiVincenzo, D. P. (1998). Quantum computation with quantum dots. Physical Review A, 57, 120–126.

    Article  CAS  Google Scholar 

  8. Zhang, X., et al. (2018). Semiconductor quantum computation. National Science Review, 6, 32–54.

    Article  CAS  Google Scholar 

  9. Georgescu, I. M., Ashhab, S., & Nori, F. (2014). Quantum simulation. Reviews of Modern Physics, 86, 153–185.

    Article  Google Scholar 

  10. Hensgens, T., et al. (2017). Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature, 548, 70.

    Article  CAS  Google Scholar 

  11. Le Hur, K., Simon, P., & Loss, D. (2007). Transport through a quantum dot with SU(4) Kondo entanglement. Physical Review B, 75, 035332.

    Article  CAS  Google Scholar 

  12. Le Hur, K., et al. (2016). Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light. Comptes Rendus Physique, 17, 808–835.

    Article  CAS  Google Scholar 

  13. Koppens, F. H. L., Nowack, K. C., & Vandersypen, L. M. K. (2008). Spin echo of a single electron spin in a quantum dot. Physical Review Letters, 100, 236802.

    Article  CAS  Google Scholar 

  14. Veldhorst, M., et al. (2014). An addressable quantum dot qubit with fault-tolerant control-fidelity. Nature Nanotechnology, 9, 981.

    Article  CAS  Google Scholar 

  15. Muhonen, J. T., et al. (2014). Storing quantum information for 30 seconds in a nanoelectronic device. Nature Nanotechnology, 9, 986.

    Article  CAS  Google Scholar 

  16. Frey, T., et al. (2012). Dipole coupling of a double quantum dot to a microwave resonator. Physical Review Letters, 108, 046807.

    Article  CAS  Google Scholar 

  17. Petersson, K. D., et al. (2012). Circuit quantum electrodynamics with a spin qubit. Nature, 490, 380–383.

    Article  CAS  Google Scholar 

  18. Delbecq, M. R., et al. (2011). Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip. Physical Review Letters, 107, 256804.

    Article  CAS  Google Scholar 

  19. Toida, H., Nakajima, T., & Komiyama, S. (2013). Vacuum Rabi splitting in a semiconductor circuit QED system. Physical Review Letters, 110, 066802.

    Article  CAS  Google Scholar 

  20. Deng, G.-W., et al. (2015). Charge number dependence of the dephasing rates of a graphene double quantum dot in a circuit QED architecture. Physical Review Letters, 115, 126804.

    Article  CAS  Google Scholar 

  21. Deng, G. W., et al. (2015). Coupling two distant double quantum dots with a microwave resonator. Nano Letters, 15, 6620.

    Article  CAS  Google Scholar 

  22. Steele, G. A., et al. (2009). Strong coupling between single-electron tunneling and nanomechanical motion. Science, 325, 1103.

    Article  CAS  Google Scholar 

  23. Lassagne, B., Tarakanov, Y., Kinaret, J., Garcia-Sanchez, D., & Bachtold, A. (2009). Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science, 325, 1107.

    Article  CAS  Google Scholar 

  24. Benyamini, A., Hamo, A., Kusminskiy, S. V., Oppen, F. V., & Ilani, S. (2014). Real-space tailoring of the electron-phonon coupling in ultraclean nanotube mechanical resonators. Nature Physics, 10, 151–156.

    Article  CAS  Google Scholar 

  25. Deng, G. W., et al. (2016). Strongly coupled nanotube electromechanical resonators. Nano Letters, 16, 5456–5462.

    Article  CAS  Google Scholar 

  26. Li, S. X., et al. (2016). Parametric strong mode-coupling in carbon nanotube mechanical resonators. Nanoscale, 8, 14809–14813.

    Article  CAS  Google Scholar 

  27. Luo, G., et al. (2017). Coupling graphene nanomechanical motion to a single-electron transistor. Nanoscale, 9, 5608–5614.

    Article  CAS  Google Scholar 

  28. Zhu, D., et al. (2017). Coherent phonon Rabi oscillations with a high-frequency carbon nanotube phonon cavity. Nano Letters, 17, 915–921.

    Article  CAS  Google Scholar 

  29. Luo, G., et al. (2018). Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity. Nature Communications, 9, 383.

    Article  CAS  Google Scholar 

  30. Yoneda, J., et al. (2018). A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nature Nanotechnology, 13, 102–106.

    Article  CAS  Google Scholar 

  31. Tarucha, S., Austing, D. G., Honda, T., van der Hage, R. J., & Kouwenhoven, L. P. (1996). Shell filling and spin effects in a few electron quantum dot. Physical Review Letters, 77, 3613–3616.

    Article  CAS  Google Scholar 

  32. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S., & Vandersypen, L. M. K. (2007). Spins in few-electron quantum dots. Reviews of Modern Physics, 79, 1217–1265.

    Article  CAS  Google Scholar 

  33. Gorter, C. J. (1951). A possible explanation of the increase of the electrical resistance of thin metal films at low temperatures and small field strengths. Physica, 17, 777–780.

    Article  Google Scholar 

  34. Fulton, T. A., & Dolan, G. J. (1987). Observation of single-electron charging effects in small tunnel junctions. Physical Review Letters, 59, 109–112.

    Article  CAS  Google Scholar 

  35. Ciorga, M., et al. (2000). Addition spectrum of a lateral dot from coulomb and spin-blockade spectroscopy. Physical Review B, 61, R16315–R16318.

    Article  CAS  Google Scholar 

  36. Elzerman, J. M., et al. (2003). Few-electron quantum dot circuit with integrated charge read out. Physical Review B, 67, 161308.

    Article  CAS  Google Scholar 

  37. Young, C. E., & Clerk, A. A. (2010). Inelastic backaction due to quantum point contact charge fluctuations. Physical Review Letters, 104, 186803.

    Article  CAS  Google Scholar 

  38. Elzerman, J. M., Hanson, R., Willems van Beveren, L. H., Vandersypen, L. M. K., & Kouwenhoven, L. P. (2004). Excited-state spectroscopy on a nearly closed quantum dot via charge detection. Applied Physics Letters, 84, 4617–4619.

    Article  CAS  Google Scholar 

  39. Petta, J. R., Johnson, A. C., Marcus, C. M., Hanson, M. P., & Gossard, A. C. (2004). Manipulation of a single charge in a double quantum dot. Physical Review Letters, 93, 186802.

    Article  CAS  Google Scholar 

  40. Bluhm, H., et al. (2010). Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Physics, 7, 109.

    Article  CAS  Google Scholar 

  41. Zwanenburg, A. S. D. F. A., Morello, A., Simmons, M. Y., Hollenberg, L. C. L., Klimeck, G., Rogge, S., Coppersmith, S. N., & Eriksson, M. A. (2013). Silicon quantum electronics. Reviews of Modern Physics, 85, 961.

    Article  CAS  Google Scholar 

  42. Saeedi, K., et al. (2013). Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science, 342, 830–833.

    Article  CAS  Google Scholar 

  43. Wang, K., Payette, C., Dovzhenko, Y., Deelman, P. W., & Petta, J. R. (2013). Charge relaxation in a single-electron Si/SiGe double quantum dot. Physical Review Letters, 111, 046801.

    Article  CAS  Google Scholar 

  44. Angus, S. J., Ferguson, A. J., Dzurak, A. S., & Clark, R. G. (2007). Gate-defined quantum dots in intrinsic silicon. Nano Letters, 7, 2051–2055.

    Article  CAS  Google Scholar 

  45. Zajac, D. M., et al. (2018). Resonantly driven CNOT gate for electron spins. Science, 359, 439.

    Article  CAS  Google Scholar 

  46. Laird, E. A., et al. (2015). Quantum transport in carbon nanotubes. Reviews of Modern Physics, 87, 703–764.

    Article  CAS  Google Scholar 

  47. Kuemmeth, F., Ilani, S., Ralph, D. C., & McEuen, P. L. (2008). Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature, 452, 448–452.

    Article  CAS  Google Scholar 

  48. Biercuk, M. J., Garaj, S., Mason, N., Chow, J. M., & Marcus, C. M. (2005). Gate-defined quantum dots on carbon nanotubes. Nano Letters, 5, 1267–1271.

    Article  CAS  Google Scholar 

  49. Fasth, C., Fuhrer, A., Björk, M. T., & Samuelson, L. (2005). Tunable double quantum dots in InAs nanowires defined by local gate electrodes. Nano Letters, 5, 1487–1490.

    Article  CAS  Google Scholar 

  50. Li, S.-X., et al. (2017). Measuring hole spin states of single quantum dot in germanium hut wire. Applied Physics Letters, 110, 133105.

    Article  CAS  Google Scholar 

  51. Zhang, Z. Z., et al. (2017). Electrotunable artificial molecules based on van der Waals heterostructures. Science Advances, 3, e1701699.

    Article  CAS  Google Scholar 

  52. Wang, L.-J., et al. (2010). A graphene quantum dot with a single electron transistor as an integrated charge sensor. Applied Physics Letters, 97, 262113.

    Article  CAS  Google Scholar 

  53. Wei, D., et al. (2013). Tuning inter-dot tunnel coupling of an etched graphene double quantum dot by adjacent metal gates. Scientific Reports, 3, 3175.

    Article  Google Scholar 

  54. Wang, L. J., et al. (2011). Gates controlled parallel-coupled double quantum dot on both single layer and bilayer graphene. Applied Physics Letters, 99, 112117.

    Article  CAS  Google Scholar 

  55. Zhang, M.-L., et al. (2014). Measuring the complex admittance of a nearly isolated graphene quantum dot. Applied Physics Letters, 105, 073510.

    Article  CAS  Google Scholar 

  56. Ashoori, R. C. (1996). Electrons in artificial atoms. Nature, 379, 413–419.

    Article  CAS  Google Scholar 

  57. McEuen, P. L., et al. (1991). Transport spectroscopy of a coulomb island in the quantum hall regime. Physical Review Letters, 66, 1926–1929.

    Article  CAS  Google Scholar 

  58. Shi, Z., et al. (2012). Fast hybrid silicon double-quantum-dot qubit. Physical Review Letters, 108, 140503.

    Article  CAS  Google Scholar 

  59. Shi, Z., et al. (2014). Fast coherent manipulation of three-electron states in a double quantum dot. Nature Communications, 5, 3020.

    Article  CAS  Google Scholar 

  60. Prance, J. R., et al. (2012). Single-shot measurement of triplet-singlet relaxation in a Si/SiGe double quantum dot. Physical Review Letters, 108, 046808.

    Article  CAS  Google Scholar 

  61. Kim, D., et al. (2014). Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature, 511, 70.

    Article  CAS  Google Scholar 

  62. Cao, G., et al. (2016). Tunable hybrid qubit in a GaAs double quantum dot. Physical Review Letters, 116, 086801.

    Article  CAS  Google Scholar 

  63. Wang, B.-C., et al. (2017). Tunable hybrid qubit in a triple quantum dot. Physical Review Applied, 064035, 8.

    Google Scholar 

  64. Yang, Y.-C., Coppersmith, S. N., & Friesen, M. (2019). Achieving high-fidelity single-qubit gates in a strongly driven charge qubit with 1/f charge noise. npj Quantum Information, 5, 12.

    Article  Google Scholar 

  65. Vandersypen, L. M. K., & Chuang, I. L. (2005). NMR techniques for quantum control and computation. Reviews of Modern Physics, 76, 1037–1069.

    Article  Google Scholar 

  66. Jozsa, R. (1994). Fidelity for mixed quantum states. Journal of Modern Optics, 41, 2315–2323.

    Article  Google Scholar 

  67. Chan, K. W., et al. (2018). Assessment of a silicon quantum dot spin qubit environment via noise spectroscopy. Physical Review Applied, 044017, 10.

    Google Scholar 

  68. Fogarty, M. A., et al. (2018). Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout. Nature Communications, 9, 4370.

    Article  CAS  Google Scholar 

  69. Kawakami, E., et al. (2014). Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nature Nanotechnology, 9, 666.

    Article  CAS  Google Scholar 

  70. Bluhm, H., Foletti, S., Mahalu, D., Umansky, V., & Yacoby, A. (2010). Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. Physical Review Letters, 105, 216803.

    Article  CAS  Google Scholar 

  71. Maune, B. M., et al. (2012). Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature, 481, 344.

    Article  CAS  Google Scholar 

  72. Shulman, M. D., et al. (2014). Suppressing qubit dephasing using real-time Hamiltonian estimation. Nature Communications, 5, 5156.

    Article  CAS  Google Scholar 

  73. Nichol, J. M., et al. (2017). High-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Information, 3, 3.

    Article  Google Scholar 

  74. Li, R., et al. (2018). A crossbar network for silicon quantum dot qubits. Science Advances, 4, eaar3960.

    Article  CAS  Google Scholar 

  75. DiVincenzo, D. P. (2000). The physical implementation of quantum computation. Fortschritte der Physik, 48, 771–783.

    Article  Google Scholar 

  76. Li, H.-O., et al. (2015). Conditional rotation of two strongly coupled semiconductor charge qubits. Nature Communications, 6, 7681.

    Article  CAS  Google Scholar 

  77. Li, H.-O., et al. (2018). Controlled quantum operations of a semiconductor three-qubit system. Physical Review Applied, 024015, 9.

    Google Scholar 

  78. Wallraff, A., et al. (2004). Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431, 162–167.

    Article  CAS  Google Scholar 

  79. Majer, J., et al. (2007). Coupling superconducting qubits via a cavity bus. Nature, 449, 443.

    Article  CAS  Google Scholar 

  80. Neeley, M., et al. (2010). Generation of three-qubit entangled states using superconducting phase qubits. Nature, 467, 570.

    Article  CAS  Google Scholar 

  81. Song, C., et al. (2019). Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science, 365, 574–577.

    Article  CAS  Google Scholar 

  82. Childress, L., Sørensen, A., & Lukin, M. (2004). Mesoscopic cavity quantum electrodynamics with quantum dots. Physical Review A, 69, 042302.

    Article  CAS  Google Scholar 

  83. Guo, G.-P., Zhang, H., Hu, Y., Tu, T., & Guo, G.-C. (2008). Dispersive coupling between the superconducting transmission line resonator and the double quantum dots. Physical Review A, 78, 020302.

    Article  CAS  Google Scholar 

  84. Lin, Z.-R., Guo, G.-P., Tu, T., Zhu, F.-Y., & Guo, G.-C. (2008). Generation of quantum-dot cluster states with a superconducting transmission line resonator. Physical Review Letters, 101, 230501.

    Article  CAS  Google Scholar 

  85. Deng, G.-W., et al. (2013). Circuit QED with a graphene double quantum dot and a reflection-line resonator. arXiv, 1310, 6118.

    Google Scholar 

  86. Viennot, J. J., Dartiailh, M. C., Cottet, A., & Kontos, T. (2015). Coherent coupling of a single spin to microwave cavity photons. Science, 349, 408.

    Article  CAS  Google Scholar 

  87. Mi, X., Cady, J. V., Zajac, D. M., Deelman, P. W., & Petta, J. R. (2017). Strong coupling of a single electron in silicon to a microwave photon. Science, 355, 156.

    Article  CAS  Google Scholar 

  88. Stockklauser, A., et al. (2017). Strong coupling cavity QED with gate-defined double quantum dots enabled by a high impedance resonator. Physical Review X, 7, 011030.

    Article  Google Scholar 

  89. Mi, X., et al. (2018). A coherent spin–photon interface in silicon. Nature, 555, 599.

    Article  CAS  Google Scholar 

  90. Samkharadze, N., et al. (2018). Strong spin-photon coupling in silicon. Science, 359, 1123.

    Article  CAS  Google Scholar 

  91. Landig, A. J., et al. (2018). Coherent spin–photon coupling using a resonant exchange qubit. Nature, 560, 179–184.

    Article  CAS  Google Scholar 

  92. Frey, T., et al. (2012). Quantum dot admittance probed at microwave frequencies with an on-chip resonator. Physical Review B, 86, 115303.

    Article  CAS  Google Scholar 

  93. Basset, D. D. J. J., Stockklauser, A., Frey, T., Reichl, C., Wegscheider, W., Ihn, T. M., Ensslin, K., & Wallraff, A. (2013). Single-electron double quantum dot dipole-coupled to a single photonic mode. Physical Review B, 88, 125312.

    Article  CAS  Google Scholar 

  94. Liu, Y. Y., et al. (2015). Semiconductor double quantum dot micromaser. Science, 347, 285–287.

    Article  CAS  Google Scholar 

  95. Delbecq, M. R., et al. (2013). Photon-mediated interaction between distant quantum dot circuits. Nature Communications, 4, 1400.

    Article  CAS  Google Scholar 

  96. Wang, R., Deacon, R. S., Car, D., Bakkers, E. P. A. M., & Ishibashi, K. (2016). InSb nanowire double quantum dots coupled to a superconducting microwave cavity. Applied Physics Letters, 108, 203502.

    Article  CAS  Google Scholar 

  97. Li, Y., et al. (2018). Coupling a germanium hut wire hole quantum dot to a superconducting microwave resonator. Nano Letters, 18, 2091–2097.

    Article  CAS  Google Scholar 

  98. Rabl, P., et al. (2010). A quantum spin transducer based on nanoelectromechanical resonator arrays. Nature Physics, 6, 602.

    Article  CAS  Google Scholar 

  99. Zhou, L.-g., Gao, M., Peng, J.-l., & Wang, X.-b. (2012). Scalability of quantum computing based on nanomechanical resonators. Physical Review A, 85, 042326.

    Article  CAS  Google Scholar 

  100. Ganzhorn, M., & Wernsdorfer, W. (2012). Dynamics and dissipation induced by single-electron tunneling in carbon nanotube nanoelectromechanical systems. Physical Review Letters, 108, 175502.

    Article  CAS  Google Scholar 

  101. Meerwaldt, H. B., et al. (2012). Probing the charge of a quantum dot with a nanomechanical resonator. Physical Review B, 86, 115454.

    Article  CAS  Google Scholar 

  102. Weber, P., et al. (2015). Switchable coupling of vibrations to two-electron carbon-nanotube quantum dot states. Nano Letters, 15, 4417–4422.

    Article  CAS  Google Scholar 

  103. Hamo, A., et al. (2016). Electron attraction mediated by coulomb repulsion. Nature, 535, 395.

    Article  CAS  Google Scholar 

  104. Khivrich, I., Clerk, A. A., & Ilani, S. (2019). Nanomechanical pump–probe measurements of insulating electronic states in a carbon nanotube. Nature Nanotechnology, 14, 161–167.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This chapter was supported by the National Natural Science Foundation of China (Grants Nos. 61704164 and 91836102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Wei Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, GW., Xu, N., Li, WJ. (2020). Gate-Defined Quantum Dots: Fundamentals and Applications. In: Yu, P., Wang, Z. (eds) Quantum Dot Optoelectronic Devices. Lecture Notes in Nanoscale Science and Technology, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-35813-6_4

Download citation

Publish with us

Policies and ethics