Skip to main content

CRAS (Climbing Robot for Autonomous InSpection): The Challenges of a High-Temperature Tank

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Abstract

This paper introduces the mobile robot CRAS (Climbing Robot for Autonomous inSpection) for autonomous NDT inspection of weld beads from industrial super-duplex steel vessels. The surfaces to be inspected are under high temperature (80 \(^\circ \)C–135 \(^\circ \)C) and the inspection is based on ultrasound. CRAS presents magnetic wheels as adhesion method and a perception system able to identify and follow weld beads. This paper approaches some current challenges for such inspection mainly due high temperatures and adopted solutions as well as future steps of CRAS development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carvalho, A., Rebello, J., Souza, M., Sagrilo, L., Soares, S.: Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry. Int. J. Press. Vessels Pip. 85(11), 745–751 (2008)

    Article  Google Scholar 

  2. Eich, M., Vögele, T.: Design and control of a lightweight magnetic climbing robot for vessel inspection. In: 2011 19th Mediterranean Conference on Control and Automation (MED), pp. 1200–1205. IEEE (2011)

    Google Scholar 

  3. Electronic, L.: LRS - light section sensor for object detection, June 2018. https://leuze.com/en/deutschland/produkte/messende_sensoren/3d_sensoren_1/lichtschnittsensoren_1/lrs_7/selector.php?supplier_aid=50111330&grp_id=1331722677208&lang=eng

  4. Espinoza, R.V., de Oliveira, A.S., de Arruda, L.V.R., Junior, F.N.: Adhesion loss prediction of a climbing robot through magnetic field analysis by artificial neural networks. In: 22nd International Congress of Mechanical Engineering, pp. 3–7 (2013)

    Google Scholar 

  5. Espinoza, R.V., de Oliveira, A.S., de Arruda, L.V.R., Junior, F.N.: Navigation stabilization system of a magnetic adherence-based climbing robot. J. Intell. Robot. Syst. 78(1), 65–81 (2015)

    Article  Google Scholar 

  6. Olympus: High temperature ultrasonic testing, February 2018. https://www.olympus-ims.com/en/applications/high-temperature-ultrasonic-testing/

  7. Rosa, A.B., Gnoatto, R.: Reprojeto e construção de protótipo de um robô de inspeção de cordões de solda em superfícies metálicas verticais e esféricas (segunda geração). B.S. thesis, Universidade Tecnológica Federal do Paraná (2015)

    Google Scholar 

  8. Rovani, A.: Desenvolvimento do protótipo de um robô para inspeção de cordões de solda em superfícies metálicas verticais. Industrial mechanical engineering - monograph, Federal University of Technology - Paraná (2013)

    Google Scholar 

  9. Santos, H.B., Teixeira, M.A.S., de Oliveira, A.S., de Arruda, L.V.R., Neves-Jr, F.: Quasi-omnidirectional fuzzy control of a climbing robot for inspection tasks. J. Intell. Robot. Syst. 91(2), 333–347 (2018)

    Article  Google Scholar 

  10. Schmidt, D., Berns, K.: Climbing robots for maintenance and inspections of vertical structures - a survey of design aspects and technologies. Robot. Auton. Syst. 61(12), 1288–1305 (2013)

    Article  Google Scholar 

  11. Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to Autonomous Mobile Robots. MIT Press, Cambridge (2011)

    Google Scholar 

  12. Tavakoli, M., Viegas, C., Marques, L., Pires, J.N., De Almeida, A.T.: OmniClimbers: omni-directional magnetic wheeled climbing robots for inspection of ferromagnetic structures. Robot. Auton. Syst. 61(9), 997–1007 (2013)

    Article  Google Scholar 

  13. Teixeira, M.A.S., Santos, H.B., Dalmedico, N., de Arruda, L.V.R., Neves-Jr, F., de Oliveira, A.S.: Intelligent environment recognition and prediction for NDT inspection through autonomous climbing robot. J. Intell. Robot. Syst. 92, 1–20 (2018)

    Article  Google Scholar 

  14. Toolboxes, T.: AST inspection savings using in-service robotics, March 2016. http://www.ttoolboxes.com/training/CourseDocuments/37/ASTInspectionSavingsUsingInServiceRobotics.pdf

  15. da Veiga, R.S., de Oliveira, A.S., de Arruda, L.V.R., Junior, F.N.: Localization and navigation of a climbing robot inside a LPG spherical tank based on dual-LIDAR scanning of weld beads. In: Robot Operating System (ROS), pp. 161–184. Springer (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Dalmedico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dalmedico, N. et al. (2020). CRAS (Climbing Robot for Autonomous InSpection): The Challenges of a High-Temperature Tank. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-36150-1_27

Download citation

Publish with us

Policies and ethics