Skip to main content

Plant Microbiome: Trends and Prospects for Sustainable Agriculture

  • Chapter
  • First Online:
Plant Microbe Symbiosis

Abstract

The plant microbiome or microbial assemblage present in plants is known to have evolved along with the plants. With the help of high-throughput community analyses methods, next-generation sequencing techniques, etc., the black box of plant microbiome has been revealed to a significant extent. A great deal of microbial diversity exists in the plant which is known to be influenced by the genotype, soil properties, environmental factors, etc., and even in some cases they are organ or tissue specific. Despite their structural variation, they contribute significantly in the plant growth and development. Plant-associated microflora are known to contribute in nutrient mobilization, tolerance to biotic and abiotic stresses and even in many physiological functions of plants. Nowadays, study of plant microbiome has claimed much attention as engineering the microbiome can be a sustainable future option to tackle many of the issues pertaining to crop production and protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Mailem DM, Sorkhoh NA, Marafie M et al (2010) Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology. Bioresour Technol 101(15):5786–5792

    Article  CAS  PubMed  Google Scholar 

  • Araújo WL, Lacava PT, Andreote FD, Azevedo JL (2008) Interaction between endophytes and plant host: biotechnological aspects. Plant-Microbe Interact 1:1–21

    Google Scholar 

  • Atamna-Ismaeel N, Finkel OM, Glaser F et al (2012) Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol 14:140–146

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Zolla G, Bakker MG et al (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198(1):264–273

    Article  CAS  PubMed  Google Scholar 

  • Bailly A, Weisskopf L (2017) Mining the volatilomes of plant-associated microbiota for new biocontrol solutions. Front Microbiol 8:1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD et al (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180(2):501–510

    Article  CAS  PubMed  Google Scholar 

  • Bao Z, Okubo T, Kubota K et al (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 80(16):5043–5052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnawal D, Bharti N, Tripathi A et al (2016) ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. J Plant Growth Regul 35:553–564

    Article  CAS  Google Scholar 

  • Behie SW, Padilla-Guerrero IE, Bidochka MJ (2013) Nutrient transfer to plants by phylogenetically diverse fungi suggests convergent evolutionary strategies in rhizospheric symbionts. Commun Integr Biol 6(1):e22321

    Article  PubMed  PubMed Central  Google Scholar 

  • Benitez MS, Osborne SL, Lehman RM (2017) Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome. Sci Rep 7(1):15709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, Vismans G, Yu K et al (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70(15–16):1876–1893

    Article  CAS  PubMed  Google Scholar 

  • Bordiec S, Paquis S, Lacroix H et al (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62(2):595–603

    Article  CAS  PubMed  Google Scholar 

  • Bouffaud ML, Renoud S, Dubost A et al (2018) 1-Aminocyclopropane-1-carboxylate deaminase producers associated to maize and other Poaceae species. Microbiome 6(1):114

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ et al (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigricans. Microbiology 148(Pt 9):2675–2685

    Article  CAS  PubMed  Google Scholar 

  • Castillo U, Harper JK, Strobel GA et al (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 224(2):183–190

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Fan JB, Du L et al (2014) The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. Appl Soil Ecol 84:235–244

    Article  Google Scholar 

  • Copeland JK, Yuan L, Layeghifard M et al (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant-Microbe Interact 28(3):274–285

    Article  CAS  PubMed  Google Scholar 

  • da Silva Fonseca E, Peixoto RS, Rosado AS et al (2018) The microbiome of Eucalyptus roots under different management conditions and its potential for biological nitrogen fixation. Microb Ecol 75:183–191

    Article  CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  CAS  PubMed  Google Scholar 

  • De Leon MP, Montecillo AD, Pinili DS et al (2018) Bacterial diversity of bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines: a first report on the metagenome of Philippine bat guano. PLoS One 13:e0200095

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Maier A, Fiebig HH et al (2011) A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem 9(11):4029–4031

    Article  CAS  PubMed  Google Scholar 

  • Duca D, Lorv J, Patten CL et al (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie van Leeuwenhoek 106(1):85–125

    Article  CAS  PubMed  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112(8):E911–E920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelbrektson A, Kunin V, Engelbrektson A et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etesami H (2018) Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agric Ecosyst Environ 253:98–112

    Article  CAS  Google Scholar 

  • Ezra D, Castillo UF, Strobel GA et al (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785–793

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2(3):155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel OM, Castrillo G, Herrera Paredes S et al (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW et al (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA 115(6):E1157–E1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca-García C, Coleman-Derr D, Garrido E et al (2016) The cacti microbiome: interplay between habitat-filtering and host-specificity. Front Microbiol 7:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaba S, Singh RN, Abrol S et al (2017) Draft genome sequence of Halolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc 5(6):e01593–e01516

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA et al (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750

    Article  PubMed  Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205

    Article  CAS  Google Scholar 

  • Gdanetz K, Trail F (2017) The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes 1:158–168

    Article  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Gomes EA, Lana UGP, Quensen JF et al (2018) Root-associated microbiome of maize genotypes with contrasting phosphorus use efficiency. Phytobiomes 2:129–137

    Article  Google Scholar 

  • Gou W, Tian L, Ruan Z et al (2015) Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pakistan J Bot 47(2):581–586

    CAS  Google Scholar 

  • Graham JH, Abbott LK (2000) Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220:207–218

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L et al (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant-Microbe Interact 24(11):1276–1288

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Khan MA et al (2009a) Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J Microbiol Biotechnol 25(10):1785–1792

    Article  CAS  Google Scholar 

  • Hamayun M, Khan SA, Kim HY et al (2009b) Gibberellin production and plant growth enhancement by newly isolated strain of Scolecobasidium tshawytschae. J Microbiol Biotechnol 19(6):560–565

    CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hayden HL, Savin KW, Wadeson J et al (2018) Comparative metatranscriptomics of wheat rhizosphere microbiomes in disease suppressive and non-suppressive soils for Rhizoctonia solani AG8. Front Microbiol 9:859

    Article  PubMed  PubMed Central  Google Scholar 

  • Higginbotham SJ, Arnold AE, Ibañez A et al (2013) Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS One 8(9):e73192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton MW, Bodenhausen N, Beilsmith K et al (2014) Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun 5:5320

    Article  PubMed  Google Scholar 

  • Hultman J, Waldrop MP, Mackelprang R et al (2015) Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521(7551):208–212

    Article  CAS  PubMed  Google Scholar 

  • Jack ALH, Nelson EB (2018) A seed-recruited microbiome protects developing seedlings from disease by altering homing responses of Pythium aphanidermatum zoospores. Plant Soil 422:209–222

    Article  CAS  Google Scholar 

  • Jacquemyn H, Brys R, Waud M et al (2015) Mycorrhizal networks and coexistence in species-rich orchid communities. New Phytol 206:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356(1–2):1–13

    Google Scholar 

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology (United Kingdom) 160(Pt 4):778–788

    CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Klein E, Ofek M, Katan J et al (2013) Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. Phytopathology 103(1):23–33

    Article  PubMed  Google Scholar 

  • Kobayashi A, Kobayashi YO, Someya N, Ikeda S (2015) Community analysis of root- and tuber-associated bacteria in field-grown potato plants harboring different resistance levels against common scab. Microbes Environ 30(4):301–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Kour D, Rana KL, Verma P et al (2017) Drought tolerant phosphorus solubilizing microbes: diversity and biotechnological applications for crops growing under rainfed conditions. In: Proceeding of national conference on advances in food science and technology, p 166–167

    Google Scholar 

  • Kumar A, Verma JP (2018) Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  CAS  PubMed  Google Scholar 

  • Lambais MR, Barrera SE, Santos EC et al (2017) Phyllosphere metaproteomes of trees from the Brazilian Atlantic Forest show high levels of functional redundancy. Microb Ecol 73(1):123–134

    Article  CAS  PubMed  Google Scholar 

  • Levy A, Conway JM, Dangl JL, Woyke T (2018) Elucidating bacterial gene functions in the plant microbiome. Cell Host Microbe 24:475–485

    Article  CAS  PubMed  Google Scholar 

  • Li G, Kronzucker HJ, Shi W (2016) The response of the root apex in plant adaptation to iron heterogeneity in soil. Front Plant Sci 7:344

    PubMed  PubMed Central  Google Scholar 

  • López-Mondéjar L (2017) Una aproximación a los espacios sagrados en el conjunto ibérico de Lorca (Murcia) entre los periodos ibérico y romano: problemas y perspectivas de trabajo

    Google Scholar 

  • Lowman JS, Lava-Chavez A, Kim-Dura S et al (2015) Switchgrass field performance on two soils as affected by bacterization of seedlings with Burkholderia phytofirmans strain PsJN. Bioenergy Res 8:440–449

    Article  Google Scholar 

  • Marzano SYL, Domier LL (2016) Reprint of “Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes”. Virus Res 213:332–342

    Article  CAS  PubMed  Google Scholar 

  • Mattarozzi M, Manfredi M, Montanini B et al (2017) A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Anal Bioanal Chem 409(9):2327–2339

    Article  CAS  PubMed  Google Scholar 

  • Mavrodi DV, Mavrodi OV, Elbourne LDH et al (2018) Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome. Front Plant Sci 9:345

    Article  PubMed  PubMed Central  Google Scholar 

  • Melnyk RA, Haney CH (2017) Plant pathology: plasmid-powered evolutionary transitions. elife 6:e33383

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Moronta-Barrios F, Gionechetti F, Pallavicini A et al (2018) Bacterial microbiota of rice roots: 16S-based taxonomic profiling of endophytic and rhizospheric diversity, endophytes isolation and simplified endophytic community. Microorganisms 6(1):E14

    Article  CAS  PubMed  Google Scholar 

  • Mushegian AA, Ebert D (2016) Rethinking “mutualism” in diverse host-symbiont communities. BioEssays 38:100–108

    Article  PubMed  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA et al (2014a) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG et al (2014b) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Newman MM, Lorenz N, Hoilett N et al (2016) Changes in rhizosphere bacterial gene expression following glyphosate treatment. Sci Total Environ 553:32–41

    Article  CAS  PubMed  Google Scholar 

  • Nobori T, Velásquez AC, Wu J et al (2018) Transcriptome landscape of a bacterial pathogen under plant immunity. Proc Natl Acad Sci USA 115(13):E3055–E3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ofek-Lalzar M, Sela N, Goldman-Voronov M et al (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  PubMed  Google Scholar 

  • Ortega RA, Mahnert A, Berg C et al (2016) The plant is crucial: specific composition and function of the phyllosphere microbiome of indoor ornamentals. FEMS Microbiol Ecol 92(12):fiw173

    Article  CAS  PubMed  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S et al (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozioko FU, Chiejina NV, Ogbonna JC (2015) Effect of some phytohormones on growth characteristics of Chlorella sorokiniana IAM-C212 under photoautotrophic conditions. Afr J Biotechnol 14:2367–2376

    Article  CAS  Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK et al (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9(4):980–989

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Gill SS, Tuteja N (2018) Crop improvement through microbial biotechnology. Elsevier, Amsterdam. ISBN 9780444639882. https://www.elsevier.com/books/crop-improvement-through-microbialbiotechnology/prasad/978-0-444-63987-5

    Google Scholar 

  • Prasad R, Kamal S, Sharma PK, Oelmueller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monnieri. J Basic Microbiol 53(12):1016–1024

    Article  CAS  PubMed  Google Scholar 

  • Rascovan N, Carbonetto B, Perrig D et al (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep 6:28084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Article  Google Scholar 

  • Reshef L, Koren O, Loya Y et al (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    Article  CAS  PubMed  Google Scholar 

  • Rolli E, Marasco R, Vigani G et al (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17(2):316–331

    Article  PubMed  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. MBio 7:e01395–e01315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg E, Koren O, Reshef L et al (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355

    Article  CAS  PubMed  Google Scholar 

  • Salvetti E, Campanaro S, Campedelli I et al (2016) Whole-metagenome-sequencing-based community profiles of Vitis vinifera L. cv. Corvina berries withered in two post-harvest conditions. Front Microbiol 7:937

    Article  PubMed  PubMed Central  Google Scholar 

  • Sangabriel-Conde W, Negrete-Yankelevich S, Maldonado-Mendoza IE, Trejo-Aguilar D (2014) Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake. Biol Fertil Soils 50:405–414

    Article  CAS  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Sarria-Guzmán Y, Chávez-Romero Y, Gómez-Acata S et al (2016) Bacterial communities associated with different Anthurium andraeanum L. plant tissues. Microbes Environ 31(3):321–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Schreiter S, Ding G-C, Heuer H et al (2014) Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol 5:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Sengupta S, Ganguli S, Singh PK (2017) Metagenome analysis of the root endophytic microbial community of Indian rice (O. sativa L.). Genomics Data 12:41–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Sergaki C, Lagunas B, Lidbury I et al (2018) Challenges and approaches in microbiome research: from fundamental to applied. Front Plant Sci 9:1205

    Article  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25(1):28–36

    Article  CAS  PubMed  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi S, Tian L, Nasir F et al (2018) Impact of domestication on the evolution of rhizomicrobiome of rice in response to the presence of Magnaporthe oryzae. Plant Physiol Biochem 132:156–165

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Trivedi P (2017) Microbiome and the future for food and nutrient security. Microb Biotechnol 10(1):50–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Mishra S, Jha P et al (2018) Effect of inoculation of zinc-resistant bacterium Enterobacter ludwigii CDP-14 on growth, biochemical parameters and zinc uptake in wheat (Triticum aestivum L.) plant. Ecol Eng 116:163–173

    Article  Google Scholar 

  • Singh D, Raina TK, Kumar A, Singh J, Prasad R (2019) Plant microbiome: a reservoir of novel genes and metabolites. Plant Gene 18:100177. https://doi.org/10.1016/j.plgene.2019.100177

    Article  CAS  Google Scholar 

  • Suman A, Nath Yadav A, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Abhilash PC, Ratna P (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives, vol 1. Springer, New Delhi

    Google Scholar 

  • Sun C, Johnson JM, Cai D et al (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167(12):1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Tsurumaru H, Okubo T, Okazaki K et al (2015) Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ 30(1):63–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner TR, Ramakrishnan K, Walshaw J et al (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21(3):256–265

    Article  CAS  PubMed  Google Scholar 

  • van Loon LC, Bakker PAHM, van der Heijdt WHW et al (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant-Microbe Interact 21:1609–1621

    Article  CAS  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufrense A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    Article  PubMed  Google Scholar 

  • Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48(5):559–565

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kumar V et al (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh D, Singh H, Prabha R (eds) Plant-Microbe interactions in agro-ecological perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_22

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828–840

    Article  CAS  PubMed  Google Scholar 

  • Wagner MR, Lundberg DS, Coleman-Derr D et al (2014) Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 17(6):717–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner MR, Lundberg DS, Del Rio TG et al (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace JG, Kremling KA, Buckler ES (2018) Quantitative genetic analysis of the maize leaf microbiome. bioRxiv. https://doi.org/10.1101/268532

  • Waqas M, Khan AL, Kamran M et al (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17(9):10754–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West SA, Kiers ET, Simms EL, Denison RF (2002) Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc R Soc B Biol Sci 269(1492):685–694

    Article  Google Scholar 

  • Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6(9):911–920

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:48–55

    CAS  Google Scholar 

  • Yadav AN, Rana KL, Kumar V, Dhaliwal HS (2016) Phosphorus solubilizing endophytic microbes: potential application for sustainable agriculture. EU Voice 2:21–22

    Google Scholar 

  • Yadav AN, Verma P, Kour D et al (2017a) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8

    Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Saxena AK (2017b) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol Eco 1:48–54

    Google Scholar 

  • Yuan Z, Druzhinina IS, Labbé J et al (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhalnina K, Louie KB, Hao Z et al (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3(4):470–480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the infrastructural facility provided by ICAR-NBAIM, Mau, under the projects entitled “Deciphering molecular mechanism for eliciting drought tolerance in model plant by drought stress alleviating bacteria” and “Identification of key biological indicators of pesticide contamination at agricultural fields of Indo-Gangetic Plains of Eastern Uttar Pradesh” and “Development of bacterial/archaeal indicators for soil health as influenced by management practices”.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Kumar, M., Verma, S., Choudhary, P., Chakdar, H. (2020). Plant Microbiome: Trends and Prospects for Sustainable Agriculture. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Symbiosis. Springer, Cham. https://doi.org/10.1007/978-3-030-36248-5_8

Download citation

Publish with us

Policies and ethics