Skip to main content

On the Microstructure and Corrosion Behavior of Wire Arc Additively Manufactured AISI 420 Stainless Steel

  • Conference paper
  • First Online:
TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

In this study, a robotic wire arc additive manufacturing (WAAM) technology utilizing advanced surface tension transfer mode was adopted to fabricate a thin wall of AISI 420 stainless steel containing 25 layers. The microstructure and corrosion properties of the as-printed wall were studied. Optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) were used to determine the microstructure of the wall. The dominant microstructure of the wall comprised of austenite and delta ferrite phases as micro-constituents embedded in a martensitic matrix, revealing a gradual increase in the amount of retained austenite from the bottom of the wall towards its top. The corrosion behavior of the wall was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) testing. As a general trend, the upper portion of the fabricated wall revealed an improved corrosion resistance and reduced pitting susceptibility than the bottom layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haselhuhn AS, Wijnen B, Anzalone GC et al (2015) In situ formation of substrate release mechanisms for gas metal arc weld metal 3-D printing. J Mater Process Technol 226:50–59. https://doi.org/10.1016/j.jmatprotec.2015.06.038

    Article  CAS  Google Scholar 

  2. Wang Q, Zhang S, Zhang CH et al (2017) Microstructure evolution and EBSD analysis of a graded steel fabricated by laser additive manufacturing. Vacuum 141:68–81. https://doi.org/10.1016/j.vacuum.2017.03.021

    Article  CAS  Google Scholar 

  3. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Acta materialia additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  CAS  Google Scholar 

  4. Ge J, Lin J, Lei Y, Fu H (2018) Location-related thermal history, microstructure, and mechanical properties of arc additively manufactured 2Cr13 steel using cold metal transfer welding. Mater Sci Eng A 715:144–153. https://doi.org/10.1016/j.msea.2017.12.076

    Article  CAS  Google Scholar 

  5. Ge J, Ma T, Chen Y et al (2019) Wire-arc additive manufacturing H13 part: 3D pore distribution, microstructural evolution, and mechanical performances. J Alloys Compd 783:145–155. https://doi.org/10.1016/j.jallcom.2018.12.274

    Article  CAS  Google Scholar 

  6. Ziętala M, Durejko T, Polański M et al (2016) The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping. Mater Sci Eng A 677:1–10. https://doi.org/10.1016/j.msea.2016.09.028

    Article  CAS  Google Scholar 

  7. Trelewicz JR, Halada GP, Donaldson OK, Manogharan G (2016) Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel. JOM 68:850–859. https://doi.org/10.1007/s11837-016-1822-4

    Article  CAS  Google Scholar 

  8. Costa L, Colaço R, Réti T et al (2003) Tempering effects in steel parts produced by additive fabrication using laser powder deposition. Virtual Model Rapid Manuf Adv Res Virtual Rapid Prototyp

    Google Scholar 

  9. Wang Z, Beese AM (2017) Effect of chemistry on martensitic phase transformation kinetics and resulting properties of additively manufactured stainless steel. Acta Mater 131:410–422. https://doi.org/10.1016/j.actamat.2017.04.022

    Article  CAS  Google Scholar 

  10. Ge J, Lin J, Fu H et al (2018) A spatial periodicity of microstructural evolution and anti-indentation properties of wire-arc additive manufacturing 2Cr13 thin-wall part. Mater Des 160:218–228. https://doi.org/10.1016/j.matdes.2018.09.021

    Article  CAS  Google Scholar 

  11. Cunningham CR, Flynn JM, Shokrani A et al (2018) Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf 22:672–686. https://doi.org/10.1016/j.addma.2018.06.020

    Article  Google Scholar 

  12. Wu B, Pan Z, Ding D et al (2018) A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process 35:127–139. https://doi.org/10.1016/j.jmapro.2018.08.001

    Article  Google Scholar 

  13. Wu B, Pan Z, Li S et al (2018) The anisotropic corrosion behaviour of wire arc additive manufactured Ti–6Al–4V alloy in 3.5% NaCl solution. Corros Sci 137:176–183. https://doi.org/10.1016/j.corsci.2018.03.047

    Article  CAS  Google Scholar 

  14. Horgar A, Fostervoll H, Nyhus B et al (2018) Additive manufacturing using WAAM with AA5183 wire. J Mater Process Technol 259:68–74. https://doi.org/10.1016/j.jmatprotec.2018.04.014

    Article  CAS  Google Scholar 

  15. Ali Y, Henckell P, Hildebrand J et al (2019) Wire arc additive manufacturing of hot work tool steel with CMT process. J Mater Process Technol 269:109–116. https://doi.org/10.1016/j.jmatprotec.2019.01.034

    Article  CAS  Google Scholar 

  16. Xu X, Ganguly S, Ding J et al (2018) Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process. Mater Charact 143:152–162. https://doi.org/10.1016/j.matchar.2017.12.002

    Article  CAS  Google Scholar 

  17. Chen X, Li J, Cheng X et al (2018) Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Mater Sci Eng A 715:307–314. https://doi.org/10.1016/j.msea.2017.10.002

    Article  CAS  Google Scholar 

  18. Li N, Zhang J, Xing W et al (2018) 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness. Mater Des 143:285–296. https://doi.org/10.1016/j.matdes.2018.01.061

    Article  CAS  Google Scholar 

  19. Bambach M, Sizova I, Silze F, Schnick M (2018) Hot workability and microstructure evolution of the nickel-based superalloy Inconel 718 produced by laser metal deposition. J Alloys Compd 740:278–287. https://doi.org/10.1016/j.jallcom.2018.01.029

    Article  CAS  Google Scholar 

  20. DebRoy T, Wei HL, Zuback JS et al (2018) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  21. Mabruri E, Syahlan ZA, Sahlan et al (2017) Influence of austenitizing heat treatment on the properties of the tempered type 410-1Mo stainless steel. IOP Conf Ser Mater Sci Eng 202. https://doi.org/10.1088/1757-899X/202/1/012085

  22. Lippold JC, Kotecki DJ (2005) Welding metallurgy and weldability of stainless steels. In: Lippold JC, Kotecki DJ (eds) Weld metall weldability stainl steels, Wiley-VCH, March 2005, 376 p. ISBN 0-471-47379-0

    Google Scholar 

  23. Krakhmalev P, Yadroitsava I, Fredriksson G, Yadroitsev I (2015) In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels. Mater Des 87:380–385. https://doi.org/10.1016/j.matdes.2015.08.045

    Article  CAS  Google Scholar 

  24. Tan C, Zhou K, Ma W et al (2017) Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater Des 134:23–34. https://doi.org/10.1016/j.matdes.2017.08.026

    Article  CAS  Google Scholar 

  25. Liu F, Lin X, Song M et al (2015) Microstructure and mechanical properties of laser solid formed 300 M steel. J Alloys Compd 621:35–41. https://doi.org/10.1016/j.jallcom.2014.09.111

    Article  CAS  Google Scholar 

  26. Zhu Y, Tian X, Li J, Wang H (2014) Microstructure evolution and layer bands of laser melting deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy. J Alloys Compd 616:468–474. https://doi.org/10.1016/j.jallcom.2014.07.161

    Article  CAS  Google Scholar 

  27. Ge J, Lin J, Chen Y et al (2018) Characterization of wire arc additive manufacturing 2Cr13 part: process stability, microstructural evolution, and tensile properties. J Alloys Compd 748:911–921. https://doi.org/10.1016/j.jallcom.2018.03.222

    Article  CAS  Google Scholar 

  28. Bilmes PD, Llorente CL, Saire Huamán L et al (2006) Microstructure and pitting corrosion of 13CrNiMo weld metals. Corros Sci 48:3261–3270. https://doi.org/10.1016/j.corsci.2005.10.009

    Article  CAS  Google Scholar 

  29. Aquino JM, Della Rovere CA, Kuri SE (2008) Localized corrosion susceptibility of supermartensitic stainless steel in welded joints. Corrosion 64:35–39. https://doi.org/10.5006/1.3278459

    Article  CAS  Google Scholar 

  30. Dadfar M, Fathi MH, Karimzadeh F et al (2007) Effect of TIG welding on corrosion behavior of 316L stainless steel. Mater Lett 61:2343–2346. https://doi.org/10.1016/j.matlet.2006.09.008

    Article  CAS  Google Scholar 

  31. Mesquita TJ, Chauveau E, Mantel M et al (2013) Influence of Mo alloying on pitting corrosion of stainless steels used as concrete reinforcement. Rem Rev Esc Minas 66:173–178. https://doi.org/10.1590/s0370-44672013000200006

    Article  Google Scholar 

  32. Lu BT, Chen ZK, Luo JL et al (2005) Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. Electrochim Acta 50:1391–1403. https://doi.org/10.1016/j.electacta.2004.08.036

    Article  CAS  Google Scholar 

  33. Kožuh S, Gojić M, Vrsalović L, Ivković B (2013) Corrosion failure and microstructure analysis of AISI 316L stainless steels for ship pipeline before and after welding. Kov Mater 51:53–61. https://doi.org/10.4149/km_2013_1_53

    Article  CAS  Google Scholar 

  34. Bonagani SK, Bathula V, Kain V (2018) Influence of tempering treatment on microstructure and pitting corrosion of 13 wt% Cr martensitic stainless steel. Corros Sci 131:340–354. https://doi.org/10.1016/j.corsci.2017.12.012

    Article  CAS  Google Scholar 

  35. Lorang G, Belo MDC, Simões AMP, Ferreira MGS (1994) Chemical composition of passive films on AISI 304 stainless steel. J Electrochem Soc 141:3347–3356. https://doi.org/10.1149/1.2059338

    Article  CAS  Google Scholar 

  36. Gupta RK, Birbilis N (2015) The influence of nanocrystalline structure and processing route on corrosion of stainless steel: a review. Corros Sci 92:1–15. https://doi.org/10.1016/j.corsci.2014.11.041

    Article  CAS  Google Scholar 

  37. Lu SY, Yao KF, Chen YB et al (2015) The effect of tempering temperature on the microstructure and electrochemical properties of a 13 wt.% Cr-type martensitic stainless steel. Electrochim Acta 165:45–55. https://doi.org/10.1016/j.electacta.2015.02.038

    Article  CAS  Google Scholar 

  38. Taji I, Moayed MH, Mirjalili M (2015) Correlation between sensitisation and pitting corrosion of AISI 403 martensitic stainless steel. Corros Sci 92:301–308. https://doi.org/10.1016/j.corsci.2014.12.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Kazemipour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kazemipour, M., Lunde, J.H., Salahi, S., Nasiri, A. (2020). On the Microstructure and Corrosion Behavior of Wire Arc Additively Manufactured AISI 420 Stainless Steel. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_41

Download citation

Publish with us

Policies and ethics