Skip to main content

Carbon Nanotubes: Synthesis and Application in Solar Cells

  • Chapter
  • First Online:
Solar Cells

Abstract

Unique structures and outstanding properties of carbon nanotubes (CNTs) have drawn significant attention of scientific community working in materials science and engineering. Researchers are taking interest in dealing with certain constraints of solar power systems and harnessing maximum energy from the sun. Construction, working life, manufacturing cost and efficiency of the solar cells are the key factors in defining their widespread use. Different strategies are being adopted to develop stable materials for manufacturing the low cost but highly efficient solar cells. Owing to high thermal stability, mechanical strength, surface area to volume ratio and electrical conductivity, CNTs can be a good choice as a solar cell material. CNT-based solar cells are fascinating the world due to their reduced manufacturing cost and high efficiency. Also, the future CNT-based hybrid solar cells would be much cheaper than the traditional energy source cells. This chapter discusses the carbon-based nanoscience and nanotechnology, structures and properties of CNTs, methods of synthesis of CNTs and use of CNTs in manufacturing the efficient solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaefer H-E (2010) Nanoscience: the science of the small in physics, engineering, chemistry, biology and medicine. Available: http://dx.doi.org/10.1007/978-3-642-10559-3

  2. Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem 5(1):1–23

    Article  CAS  Google Scholar 

  3. Radushkevich LV, Lukyanovich VM (1952) The structure of carbon when thermal decompositions of carbon monoxide on iron contact. J Phys Chem 26:88–95

    CAS  Google Scholar 

  4. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  5. Moisala A, Nasibulin AG, Brown DP, Jiang H, Khriachtchev L, Kauppinen EI (2006) Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem Eng Sci 61:4393–4402

    Article  CAS  Google Scholar 

  6. Yildirim T, Gülseren O, Kılıç Ç, Ciraci S (2000) Pressure-induced interlinking of carbon nanotubes. Phys Rev B 62:12648–12651

    Article  CAS  Google Scholar 

  7. Han J (2004) Structures and properties of carbon nanotubes, pp 1–24

    Google Scholar 

  8. Dresselhaus MS, Dresselhaus G, Eklund PC (1993) Fullerenes. J Mater Res 8:2054–2097

    Article  CAS  Google Scholar 

  9. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  10. Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J et al (2005) Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310:1171–1174

    Article  CAS  Google Scholar 

  11. Calvert P (1999) Nanotube composites: a recipe for strength. Nature 399:210–211

    Article  CAS  Google Scholar 

  12. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060

    Article  CAS  Google Scholar 

  13. Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. TrAC Trends Anal Chem 25:480–489

    Article  CAS  Google Scholar 

  14. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  15. Vorob’eva AI (2010) Equipment and techniques for carbon nanotube research. Physics-Uspekhi 53:257–277

    Article  CAS  Google Scholar 

  16. Sato M (2011) Elastic and plastic deformation of carbon nanotubes. Proc Eng 14:2366–2372

    Article  CAS  Google Scholar 

  17. Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert D, Smalley RE (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, vol 260

    Article  CAS  Google Scholar 

  18. Schönenberger C, Bachtold A, Strunk C, Salvetat JP, Forro L (1999) Interference and interaction in multi-wall carbon nanotubes. Appl Phys A 69:283

    Article  Google Scholar 

  19. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    Article  CAS  Google Scholar 

  20. Frank S, Poncharal P, Wang ZL, De Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746

    Article  CAS  Google Scholar 

  21. Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59:R2514

    Article  CAS  Google Scholar 

  22. Gorbunov A, Jost O, Pompe W, Graff A (2002) Solid–liquid–solid growth mechanism of single-wall carbon nanotubes. Carbon 40:113–118

    Article  CAS  Google Scholar 

  23. Kanzow H, Ding A (1999) Formation mechanism of single-wall carbon nanotubes on liquid-metal particles. Phys Rev B 60:11180–11186

    Article  CAS  Google Scholar 

  24. Krivoruchko O, Maksimova NI, Zaikovskii V, Salanov AN (2000) Study of multiwalled graphite nanotubes and filaments formation from carbonized products of polyvinyl alcohol via catalytic graphitization at 600–800°C in nitrogen atmosphere, vol 38

    Google Scholar 

  25. Shukrullah S, Mohamed NM, Shaharun MS, Saheed MSM, Irshad MI (2016) Effect of CVD process temperature on activation energy and structural growth of MWCNTs. Metall Mater Trans A 47:1413–1424

    Article  CAS  Google Scholar 

  26. Shukrullah S, Mohamed NM, Shaharun MS, Naz MY (2016) Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes. Mater Chem Phys 176:32–43

    Article  CAS  Google Scholar 

  27. Baker R, Waite R (1975) Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. J Catal 37:101–105

    Article  CAS  Google Scholar 

  28. Baker R, Barber M, Harris P, Feates F, Waite R (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26:51–62

    Article  CAS  Google Scholar 

  29. Kataura H, Kumazawa Y, Maniwa Y, Ohtsuka Y, Sen R, Suzuki S et al (2000) Diameter control of single-walled carbon nanotubes, vol 38

    Article  CAS  Google Scholar 

  30. Shukrullah S, Mohamed NM, Shaharun MS (2015) Optimum temperature on structural growth of multiwalled carbon nanotubes with low activation energy. Diam Relat Mater 58:129–138

    Article  CAS  Google Scholar 

  31. Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475

    Article  CAS  Google Scholar 

  32. Cheng Y, Zhang J, Lee YZ, Gao B, Dike S, Lin W et al (2004) Dynamic radiography using a carbon-nanotube-based field-emission x-ray source. Rev Sci Instrum 75:3264–3267

    Article  CAS  Google Scholar 

  33. Nakazawa S, Yokomori T, Mizomoto M (2005) Flame synthesis of carbon nanotubes in a wall stagnation flow. Chem Phys Lett 403:158

    Article  CAS  Google Scholar 

  34. Chung Y-H, Jou S (2005) Carbon nanotubes from catalytic pyrolysis of polypropylene. Mater Chem Phys 92:256–259

    Article  CAS  Google Scholar 

  35. Zhang YF, Gamo MN, Xiao CY, Ando T (2002) Liquid phase synthesis of carbon nanotubes. Phys B: Condens Matter 323:293–295

    Article  CAS  Google Scholar 

  36. Zhao X, Ohkohchi M, Wang M, Iijima S, Ichihashi T, Ando Y (1997) Preparation of high-grade carbon nanotubes by hydrogen arc discharge. Carbon 35:775–781

    Article  CAS  Google Scholar 

  37. Shukrullah S, Mohamed NM, Shaharun MS, Naz MY (2014) Effect of ferrocene concentration on the quality of multiwalled CNTs grown by floating catalytic chemical vapor deposition technique. Main Group Chem 13:251–259

    Article  CAS  Google Scholar 

  38. Jahanshahi M, Raoof J-B, Hajizadeh S, Seresht RJ (2009) Synthesis and subsequent purification of carbon nanotubes by arc discharge in NaCl solution. physica status solidi (a) 206:101–105

    Article  CAS  Google Scholar 

  39. Alexiadis VI, Boukos N, Verykios XE (2011) Influence of the composition of Fe2O3/Al2O3 catalysts on the rate of production and quality of carbon nanotubes. Mater Chem Phys 128:96–108

    Google Scholar 

  40. Alexiadis VI, Verykios XE (2009) Influence of structural and preparation parameters of Fe2O3/Al2O3 catalysts on rate of production and quality of carbon nanotubes. Mater Chem Phys 117:528–535

    Article  CAS  Google Scholar 

  41. Amirhasan N, Bahram G, Mostafa Z, Ezatollah A (2007) Morphology optimization of CCVD-synthesized multiwall carbon nanotubes, using statistical design of experiments. Nanotechnology 18:115715

    Article  CAS  Google Scholar 

  42. Awadallah AE, Abdel-Hamid SM, El-Desouki DS, Aboul-Enein AA, Aboul-Gheit AK (2012) Synthesis of carbon nanotubes by CCVD of natural gas using hydrotreating catalysts. Egypt J Petrol 21:101–107

    Article  Google Scholar 

  43. Tripathi N, Mishra P, Harsh H, Islam SS (2014) Fine-tuning control on CNT diameter distribution, length and density using thermal CVD growth at atmospheric pressure: an in-depth analysis on the role of flow rate and flow duration of acetylene (C2H2) gas. Appl Nanosci 5:19–28

    Article  CAS  Google Scholar 

  44. Patra N, Akash K, Shiva S, Gagrani R, Rao HSP, Anirudh VR et al (2016) Parametric investigations on the influence of nano-second Nd3+:YAG laser wavelength and fluence in synthesizing NiTi nano-particles using liquid assisted laser ablation technique. Appl Surf Sci 366:104–111

    Article  CAS  Google Scholar 

  45. Lascialfari L, Marsili P, Caporali S, Muniz-Miranda M, Margheri G, Serafini A et al (2014) Carbon nanotubes/laser ablation gold nanoparticles composites. Thin Solid Films 569:93–99

    Article  CAS  Google Scholar 

  46. Chang-Jian S-K, Ho J-R, John Cheng JW (2011) Fabrication of transparent double-walled carbon nanotubes flexible matrix touch panel by laser ablation technique. Optics Laser Technol 43:1371–1376

    Article  CAS  Google Scholar 

  47. Journet C, Bernier P (1998) Production of carbon nanotubes. Appl Phys A 67:1

    Article  CAS  Google Scholar 

  48. Rafique MMA, Iqbal J (2011) Production of carbon nanotubes by different routes—a review. J Encapsul Adsorpt Sci 1:29–34

    Article  CAS  Google Scholar 

  49. Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243:49–54

    Article  CAS  Google Scholar 

  50. Shukrullah S, Mohamed NM, Shaharun MS, Naz MY (2014) Mass production of carbon nanotubes using fluidized bed reactor: a short review. Trends Appl Sci Res 9:121–131

    Article  CAS  Google Scholar 

  51. Dasgupta K, Joshi JB, Banerjee S (2011) Fluidized bed synthesis of carbon nanotubes—a review. Chem Eng J 171:841–869

    Article  CAS  Google Scholar 

  52. Gui MM, Yap YX, Chai S-P, Mohamed AR (2013) Multi-walled carbon nanotubes modified with (3-aminopropyl) triethoxysilane for effective carbon dioxide adsorption. Int J Greenhouse Gas Control 14:65–73

    Article  CAS  Google Scholar 

  53. Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K (2011) Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63:141–163

    Article  CAS  Google Scholar 

  54. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  CAS  Google Scholar 

  55. Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C et al (2015) Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today 18:155–162

    Article  CAS  Google Scholar 

  56. Kazuharu S, Makoto Y, Mikio K, Shozo Y (2003) Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem Lett 32:28–29

    Article  Google Scholar 

  57. Oo TT, Debnath S (2017) Application of carbon nanotubes in perovskite solar cells: a review. AIP Conf Proc 1902:020015

    Article  CAS  Google Scholar 

  58. Zhao Z, Sun W, Li Y, Ye S, Rao H, Gu F et al (2017) Simplification of device structures for low-cost, high-efficiency perovskite solar cells. J Mater Chem A 5:4756–4773

    Article  CAS  Google Scholar 

  59. Wei Z, Chen H, Yan K, Zheng X, Yang S (2015) Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J Mater Chem A 3:24226–24231

    Article  CAS  Google Scholar 

  60. Kumar U, Sikarwar S, Sonker RK, Yadav BC (2016) Carbon nanotube: synthesis and application in solar cell. J Inorg Organomet Polym Mater 26:1231–1242

    Article  CAS  Google Scholar 

  61. Kim B-J, Han S-H, Park J-S (2015) Properties of CNTs coated by PEDOT: PSS films via spin-coating and electrophoretic deposition methods for flexible transparent electrodes, vol 271

    Article  CAS  Google Scholar 

  62. Aspitarte L, McCulley DR, Minot ED (2016) Photocurrent quantum yield in suspended carbon nanotube p–n junctions. Nano Lett 16:5589–5593

    Article  CAS  Google Scholar 

  63. Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87:073101

    Article  CAS  Google Scholar 

  64. Freitag M, Martin Y, Misewich JA, Martel R, Avouris P (2003) Photoconductivity of single carbon nanotubes. Nano Lett 3:1067–1071

    Article  CAS  Google Scholar 

  65. Wang F, Matsuda K (2019) Applications of carbon nanotubes in solar cells. In: Nakashima N (ed) Nanocarbons for energy conversion: supramolecular approaches. Springer International Publishing, Cham, pp 497–536

    Chapter  Google Scholar 

  66. Wei J, Jia Y, Shu Q, Gu Z, Wang K, Zhuang D et al (2007) Double-walled carbon nanotube solar cells. Nano Lett 7:2317–2321

    Article  CAS  Google Scholar 

  67. Jia Y, Wei J, Wang K, Cao A, Shu Q, Gui X et al (2008) Nanotube–Silicon heterojunction solar cells. Adv Mater 20:4594–4598

    Article  CAS  Google Scholar 

  68. Shu Q, Wei J, Wang K, Zhu H, Li Z, Jia Y et al (2009) Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes. Nano Lett 9:4338–4342

    Article  CAS  Google Scholar 

  69. Jia Y, Li P, Wei J, Cao A, Wang K, Li C et al (2010) Carbon nanotube films by filtration for nanotube-silicon heterojunction solar cells. Mater Res Bull 45:1401–1405

    Article  CAS  Google Scholar 

  70. Jia Y, Cao A, Bai X, Li Z, Zhang L, Guo N et al (2011) Achieving high efficiency Silicon-Carbon nanotube heterojunction solar cells by acid doping, vol 11

    Google Scholar 

  71. Kozawa D, Hiraoka K, Miyauchi Y, Mouri S, Matsuda K (2012) Analysis of the photovoltaic properties of single-walled carbon nanotube/silicon heterojunction solar cells. Appl Phys Express 5:042304

    Article  CAS  Google Scholar 

  72. Muramoto E, Yamasaki Y, Wang F, Hasegawa K, Matsuda K, Noda S (2016) Carbon nanotube–Silicon heterojunction solar cells with surface-textured Si and solution-processed carbon nanotube films. RSC Adv 6:93575–93581

    Article  CAS  Google Scholar 

  73. Beesley DJ, Price BK, Hunter S, Shaffer MSP, de Mello JC (2016) Direct dispersion of SWNTs in highly conductive solvent-enhanced PEDOT: PSS films. Nanocomposites 2:135–140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shazia Shukrullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukrullah, S., Naz, M.Y., Ali, K., Sharma, S.K. (2020). Carbon Nanotubes: Synthesis and Application in Solar Cells. In: Sharma, S., Ali, K. (eds) Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-36354-3_7

Download citation

Publish with us

Policies and ethics