Skip to main content

A Machine Learning Approach for Walker Identification Using Smartphone Sensors

  • Chapter
  • First Online:
Complex Pattern Mining

Abstract

Nowadays, smartphones are equipped with MEMS sensors like accelerometers, gyroscopes, and magnetometers. In this work we exploited this kind of sensors to provide advanced information about the walker bringing the smartphone. In particular, smartphone sensors outputs are used to recognize the identity of the walker and the pose of the device during the walk. If the aforementioned information was known, it could be used to improve the functionalities of specific smartphones. For instance, the recognition of walker identity can be used for theft protection or the device pose can be used to improve the performance of the pedestrian navigation. In this paper, we adopted a decision tree classifier approach to recognize the previously described contexts using data produced by smartphone sensors, obtaining effective results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cs.waikato.ac.nz/ml/weka/.

References

  1. Bogue, R.: Recent developments in mems sensors: a review of applications, markets and technologies. Sens. Rev. 33(4), 300–304 (2013)

    Article  Google Scholar 

  2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  4. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 46(3), 33:1–33:33 (2014)

    Article  Google Scholar 

  5. Esmael, B., Arnaout, A., Fruhwirth, R.K., Thonhauser, G.: Multivariate time series classification by combining trend-based and value-based approximations. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) Computational Science and Its Applications - ICCSA 2012, pp. 392–403. Springer, Berlin (2012)

    Chapter  Google Scholar 

  6. Fareed, U.: Smartphone sensor fusion based activity recognition system for elderly healthcare. In: Proceedings of the 2015 Workshop on Pervasive Wireless Healthcare, pp. 29–34. MobileHealth ’15, ACM, New York, NY, USA (2015)

    Google Scholar 

  7. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

    Article  MATH  Google Scholar 

  8. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 1533–1540. IJCAI’16, AAAI Press (2016). http://dl.acm.org/citation.cfm?id=3060832.3060835

  9. Hoang, T., Choi, D., Nguyen, T.: On the instability of sensor orientation in gait verification on mobile phone. In: 2015 12th International Joint Conference on e-Business and Telecommunications (ICETE), vol. 04, pp. 148–159 (2015)

    Google Scholar 

  10. Jain, Y., Chowdhury, D., Chattopadhyay, M.: Machine learning based fitness tracker platform using mems accelerometer. In: 2017 International Conference on Computer, Electrical Communication Engineering (ICCECE), pp. 1–5 (2017). https://doi.org/10.1109/ICCECE.2017.8526202

  11. Kabigting, J.E.T., Chen, A.D., Chang, E.J., Lee, W., Roberts, R.C.: Mems pressure sensor array wearable for traditional chinese medicine pulse-taking. In: 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 59–62 (2017). https://doi.org/10.1109/BSN.2017.7936007

  12. Khan, W., Xiang, Y., Aalsalem, M., Arshad, Q.: Mobile phone sensing systems: a survey. IEEE Commun. Surv. Tutor. 15(1), 402–427 (2013). https://doi.org/10.1109/SURV.2012.031412.00077

    Article  Google Scholar 

  13. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, pp. 1137–1143. IJCAI’95, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1995)

    Google Scholar 

  14. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Cell phone-based biometric identification. In: 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–7 (2010)

    Google Scholar 

  15. Lammel, G.: The future of mems sensors in our connected world. In: 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 61–64 (2015)

    Google Scholar 

  16. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)

    Article  Google Scholar 

  17. Lee, W.H., Lee, R.: Implicit sensor-based authentication of smartphone users with smartwatch. In: Proceedings of the Hardware and Architectural Support for Security and Privacy 2016, pp. 9:1–9:8. HASP 2016, ACM, New York, NY, USA (2016)

    Google Scholar 

  18. Liu, S., Gao, R.X., John, D., Staudenmayer, J.W., Freedson, P.S.: Multisensor data fusion for physical activity assessment. IEEE Trans. Biomed. Eng. 59(3), 687–696 (2012)

    Article  Google Scholar 

  19. Mohammad Masoud, Yousef Jaradat, A.M., Jannoud, I.: Sensors of smart devices in the internet of everything (ioe) era: Big opportunities and massive doubts (2019). https://doi.org/10.1155/2019/6514520

    Article  Google Scholar 

  20. Nweke, H.F., Teh, Y.W., Al-garadi, M.A., Alo, U.R.: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert. Syst. Appl. 105, 233–261 (2018). https://doi.org/10.1016/j.eswa.2018.03.056

    Article  Google Scholar 

  21. Ordonez, F.J., Roggen, D.: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1) (2016)

    Article  Google Scholar 

  22. Pei, L., Liu, J., Guinness, R., Chen, Y., Kuusniemi, H., Chen, R.: Using ls-svm based motion recognition for smartphone indoor wireless positioning. Sensors (Basel) (2012)

    Google Scholar 

  23. Radu, V., Lane, N.D., Bhattacharya, S., Mascolo, C., Marina, M.K., Kawsar, F.: Towards multimodal deep learning for activity recognition on mobile devices. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 185–188. UbiComp ’16, ACM, New York, NY, USA (2016)

    Google Scholar 

  24. Rokni, S.A., Ghasemzadeh, H.: Autonomous training of activity recognition algorithms in mobile sensors: a transfer learning approach in context-invariant views. IEEE Trans. Mob. Comput. 17(8), 1764–1777 (2018). https://doi.org/10.1109/TMC.2018.2789890

    Article  Google Scholar 

  25. Ronao, C.A., Cho, S.B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59(C), 235–244 (2016)

    Article  Google Scholar 

  26. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Pearson Education Limited, Malaysia (2016)

    MATH  Google Scholar 

  27. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 36, 111–147 (1974)

    MathSciNet  MATH  Google Scholar 

  28. Susi, M., Renaudin, V., Lachapelle, G.: Motion mode recognition and step detection algorithms for mobile phone user. J. Locat. Based Serv (2012)

    Google Scholar 

  29. Yan, Y., Cosgrove, S., Blantont, E., Ko, S.Y., Ziarek, L.: Real-time sensing on android. In: Proceedings of the 12th International Workshop on Java Technologies for Real-time and Embedded Systems, pp. 67:67–67:75. JTRES ’14, ACM, New York, NY, USA (2014)

    Google Scholar 

  30. Yu, K., Liu, Y., Qing, L., Wang, B., Cheng, Y.: Positive and unlabeled learning for user behavior analysis based on mobile internet traffic data. IEEE Access 6, 37568–37580 (2018). https://doi.org/10.1109/ACCESS.2018.2852008

    Article  Google Scholar 

  31. Zhang, H., Yuan, W., Shen, Q., Li, T., Chang, H.: A handheld inertial pedestrian navigation system with accurate step modes and device poses recognition. IEEE Sens. J. 15(3), 1421–1429 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Ardimento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angrisano, A., Ardimento, P., Bernardi, M.L., Cimitile, M., Gaglione, S. (2020). A Machine Learning Approach for Walker Identification Using Smartphone Sensors. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) Complex Pattern Mining. Studies in Computational Intelligence, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-030-36617-9_14

Download citation

Publish with us

Policies and ethics