Skip to main content

Systematic Review of Deep Learning and Machine Learning Models in Biofuels Research

  • Conference paper
  • First Online:
Engineering for Sustainable Future (INTER-ACADEMIA 2019)

Abstract

The importance of energy systems and their role in economics and politics is not hidden for anyone. This issue is not only important for the advanced industrialized countries, which are major energy consumers but is also essential for oil-rich countries. In addition to the nature of these fuels, which contains polluting substances, the issue of their ending up has aggravated the growing concern. Biofuels can be used in different fields for energy production like electricity production, power production, or for transportation. Various scenarios have been written about the estimated biofuels from different sources in the future energy system. The availability of biofuels for the electricity market, heating, and liquid fuels is critical. Accordingly, the need for handling, modeling, decision making, and forecasting for biofuels can be of utmost importance. Recently, machine learning (ML) and deep learning (DL) techniques have been accessible in modeling, optimizing, and handling biodiesel production, consumption, and environmental impacts. The main aim of this study is to review and evaluate ML and DL techniques and their applications in handling biofuels production, consumption, and environmental impacts, both for modeling and optimization purposes. Hybrid and ensemble ML methods, as well as DL methods, have found to provide higher performance and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANN:

Artificial neural network

ELM:

Extreme learning machine

ML:

Machine learning

SVM:

Support vector machine

WNN:

Wavelet neural networks

DL:

Deep learning

ARIMA:

Autoregressive integrated moving average

FFNN:

Feed-forward neural networks

MLP:

Multi layered perceptron

DT:

Decision tree

RSM:

Response surface methodology

BPNN:

Back propagation neural network

CM:

Centroid mean

ANFIS:

Adaptive neuro fuzzy inference system

ANP:

Analytic network process

RF:

Random forest

NRTL:

Non-random two-liquid

RNN:

Recurrent neural network

PLS:

Partial least squares

DA:

Discriminant analysis

PCA:

Principal component analysis

LDA:

Linear discriminant analysis

SVR:

Support vector regression

LS:

Least-squares

SB:

Sparse Bayesian

MCDM:

Multi criteria decision making

GP:

Genetic programming

MLR:

Multi linear regression

SWARA:

Step-wise Weight Assessment Ratio Analysis

MOORA:

Multi Objective Optimization by Ratio Analysis

References

  1. Landis, D.A., et al.: Biomass and biofuel crop effects on biodiversity and ecosystem services in the North Central US. Biomass Bioenergy 114, 18–29 (2018)

    Article  Google Scholar 

  2. Shaosen, S., et al.: Experimental and artificial intelligence for determination of stable criteria in cyclic voltammetric process of medicinal herbs for biofuel cells. Int. J. Energy Res. (2019)

    Google Scholar 

  3. Wong, K.I., Wong, P.K.: Optimal calibration of variable biofuel blend dual-injection engines using sparse Bayesian extreme learning machine and metaheuristic optimization. Energy Convers. Manag. 148, 1170–1178 (2017)

    Article  Google Scholar 

  4. Wong, K.I., Wong, P.K.: Adaptive air-fuel ratio control of dual-injection engines under biofuel blends using extreme learning machine. Energy Convers. Manag. 165, 66–75 (2018)

    Article  Google Scholar 

  5. Zhang, F., et al.: Integrating GIS with optimization method for a biofuel feedstock supply chain. Biomass Bioenergy 98, 194–205 (2017)

    Article  Google Scholar 

  6. Afsharzade, N., et al.: Renewable energy development in rural areas of Iran. Renew. Sustain. Energy Rev. 65, 743–755 (2016)

    Article  Google Scholar 

  7. Fardad, K.: Producing Biogas from Medicinal Plants, in Biosystem Engineering. University of Mohaghegh Ardabili, Ardabil, Iran (2017)

    Google Scholar 

  8. Jebli, M.B., Youssef, S.B.: The role of renewable energy and agriculture in reducing CO2 emissions: evidence for North Africa countries (2015)

    Google Scholar 

  9. Concu, R., et al.: PTML model of enzyme subclasses for mining the proteome of biofuel producing microorganisms. J. Proteome Res. (2019)

    Google Scholar 

  10. De Bortoli, A.L., Pereira, F.N.: Obtaining a reduced kinetic mechanism for Methyl Butanoate. J. Math. Chem. 57(3), 812–833 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. del Rio-Chanona, E.A., et al.: Deep learning-based surrogate modeling and optimization for microalgal biofuel production and photobioreactor design. AIChE J. 65(3), 915–923 (2019)

    Article  Google Scholar 

  12. Demirbas, A.: Global biofuel strategies. Energy Educ. Sci. Technol. 17(1/2), 27 (2006)

    Google Scholar 

  13. Xue, J., Grift, T.E., Hansen, A.C.: Effect of biodiesel on engine performances and emissions. Renew. Sustain. Energy Rev. 15(2), 1098–1116 (2011)

    Article  Google Scholar 

  14. Seyyed aram, A., Najafi, B.: The effect of biodiesel of butanol alcohol and waste oil on performance and emission of diesel engine, in biosystem engineering. Thesis of M.Sc., University of Mohaghegh Ardabili (2016)

    Google Scholar 

  15. Nicoletti, J., Ning, C., You, F.: Incorporating agricultural waste-to-energy pathways into biomass product and process network through data-driven nonlinear adaptive robust optimization. Energy 180, 556–571 (2019)

    Article  Google Scholar 

  16. Opgenorth, P., et al.: Lessons from two Design-Build-Test-Learn cycles of dodecanol production in Escherichia coli aided by machine learning. ACS Synth. Biol. 8(6), 1337–1351 (2019)

    Article  Google Scholar 

  17. Rezk, H., et al.: Improving the environmental impact of palm kernel shell through maximizing its production of hydrogen and syngas using advanced artificial intelligence. Sci. Total Environ. 658, 1150–1160 (2019)

    Article  Google Scholar 

  18. Salmeron, J.L., Ruiz-Celma, A.: Elliot and symmetric elliot extreme learning machines for Gaussian noisy industrial thermal modelling. Energies 12(1), 90 (2019)

    Article  Google Scholar 

  19. Ghaderi, M., et al.: An analysis of noise pollution emitted by moving MF285 Tractor using different mixtures of biodiesel, bioethanol and diesel through artificial intelligence. J. Low Freq. Noise Vib. Act. Control 38(2), 270–281 (2019)

    Article  Google Scholar 

  20. Habyarimana, E., et al.: Towards predictive modeling of sorghum biomass yields using fraction of absorbed photosynthetically active radiation derived from sentinel-2 satellite imagery and supervised machine learning techniques. Agronomy 9(4), 203 (2019)

    Article  Google Scholar 

  21. Kumar, S., et al.: Thermozymes: adaptive strategies and tools for their biotechnological applications. Bioresour. Technol. 278, 372–382 (2019)

    Article  Google Scholar 

  22. Mosavi, A., et al.: State of the art of machine learning models in energy systems, a systematic review. Energies 12(7), 1301 (2019)

    Article  Google Scholar 

  23. Muthukumaran, C., et al.: Process optimization and kinetic modeling of biodiesel production using non-edible Madhuca indica oil. Fuel 195, 217–225 (2017)

    Article  Google Scholar 

  24. Anderson, R., et al.: An integrated modeling framework for crop and biofuel systems using the DSSAT and GREET models. Environ. Model Softw. 108, 40–50 (2018)

    Article  Google Scholar 

  25. Kessler, T., et al.: Artificial neural network based predictions of cetane number for furanic biofuel additives. Fuel 206, 171–179 (2017)

    Article  Google Scholar 

  26. Choubin, B., et al.: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 651, 2087–2096 (2019)

    Article  Google Scholar 

  27. Dehghani, M., et al.: Prediction of hydropower generation using Grey wolf optimization adaptive neuro-fuzzy inference system. Energies 12(2), 289 (2019)

    Article  Google Scholar 

  28. Dineva, A., et al.: Review of soft computing models in design and control of rotating electrical machines. Energies 12(6), 1049 (2019)

    Article  Google Scholar 

  29. Dineva, A., et al.: Multi-Label Classification for Fault Diagnosis of Rotating Electrical Machines (2019)

    Google Scholar 

  30. Farzaneh-Gord, M., et al.: Numerical simulation of pressure pulsation effects of a snubber in a CNG station for increasing measurement accuracy. Eng. Appl. Comput. Fluid Mech. 13(1), 642–663 (2019)

    Google Scholar 

  31. Ghalandari, M., et al.: Investigation of submerged structures’ flexibility on sloshing frequency using a boundary element method and finite element analysis. Eng. Appl. Comput. Fluid Mech. 13(1), 519–528 (2019)

    Google Scholar 

  32. Ghalandari, M., et al.: Flutter speed estimation using presented differential quadrature method formulation. Eng. Appl. Comput. Fluid Mech. 13(1), 804–810 (2019)

    Google Scholar 

  33. Karballaeezadeh, N., et al.: Prediction of remaining service life of pavement using an optimized support vector machine (case study of Semnan-Firuzkuh road). Eng. Appl. Comput. Fluid Mech. 13(1), 188–198 (2019)

    Google Scholar 

  34. Menad, N.A., et al.: Modeling temperature dependency of oil - water relative permeability in thermal enhanced oil recovery processes using group method of data handling and gene expression programming. Eng. Appl. Comput. Fluid Mech. 13(1), 724–743 (2019)

    MathSciNet  Google Scholar 

  35. Mohammadzadeh, S., et al.: Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures 4(2), 26 (2019)

    Article  Google Scholar 

  36. Mosavi, A., Edalatifar, M.: A hybrid neuro-fuzzy algorithm for prediction of reference evapotranspiration. Lecture Notes in Networks and Systems, pp. 235–243. Springer (2019)

    Google Scholar 

  37. Mosavi, A., Lopez, A., Várkonyi-Kóczy, A.R.: Industrial applications of big data: state of the art survey. In: Luca, D., Sirghi, L., Costin, C. (eds.) pp. 225–232. Springer (2018)

    Google Scholar 

  38. Mosavi, A., Ozturk, P., Chau, K.W.: Flood prediction using machine learning models: literature review. Water (Switzerland) 10(11), 1536 (2018)

    Google Scholar 

  39. Mosavi, A., Rabczuk, T.: Learning and intelligent optimization for material design innovation. In: Kvasov, D.E., et al. (eds.) pp. 358–363. Springer (2017)

    Google Scholar 

  40. Mosavi, A., Rabczuk, T., Várkonyi-Kóczy, A.R.: Reviewing the novel machine learning tools for materials design. In: Luca, D., Sirghi, L., Costin, C. (eds.) pp. 50–58. Springer (2018)

    Google Scholar 

  41. Aram, F., et al.: Design and validation of a computational program for analysing mental maps: aram mental map analyzer. Sustainability (Switzerland) 11(14), 3790 (2019)

    Article  Google Scholar 

  42. Asadi, E., et al.: Groundwater Quality Assessment for Drinking and Agricultural Purposes in Tabriz Aquifer, Iran (2019)

    Google Scholar 

  43. Asghar, M.Z., Subhan, F., Imran, M., Kundi, F.M., Shamshirband, S., Mosavi, A., Csiba, P., Várkonyi-Kóczy, A.R.: Performance Evaluation of Supervised Machine Learning Techniques for Efficient Detection of Emotions from Online Content. Pre-prints 2019, 2019080019. (https://doi.org/10.20944/preprints201908.0019.v1)

  44. Bemani, A., Baghban, A., Shamshirband, S., Mosavi, A., Csiba, P., Várkonyi-Kóczy, A.R.: Applying ANN, ANFIS, and LSSVM Models for Estimation of Acid Solvent Solubility in Supercritical CO2. Preprints (2019), 2019060055. (https://doi.org/10.20944/preprints201906.0055.v2)

  45. Choubin, B., et al.: Snow avalanche hazard prediction using machine learning methods. J. Hydrol. 577, 123929 (2019)

    Article  Google Scholar 

  46. Mosavi, A., et al.: Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. Eng. Appl. Comput. Fluid Mech. 13(1), 482–492 (2019)

    Google Scholar 

  47. Mosavi, A., Várkonyi-Kóczy, A.R.: Integration of machine learning and optimization for robot learning. In: Jablonski, R., Szewczyk, R. (eds.) pp. 349–355. Springer (2017)

    Google Scholar 

  48. Nosratabadi, S., et al.: Sustainable business models: a review. Sustainability (Switzerland) 11(6), 1663 (2019)

    Article  Google Scholar 

  49. Qasem, S.N., et al.: Estimating daily dew point temperature using machine learning algorithms. Water (Switzerland) 11(3), 582 (2019)

    Google Scholar 

  50. Rezakazemi, M., Mosavi, A., Shirazian, S.: ANFIS pattern for molecular membranes separation optimization. J. Mol. Liq. 274, 470–476 (2019)

    Article  Google Scholar 

  51. Riahi-Madvar, H., et al.: Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. Eng. Appl. Comput. Fluid Mech. 13(1), 529–550 (2019)

    Google Scholar 

  52. Shabani, S., Samadianfard, S., Taghi Sattari, M., Shamshirband, S., Mosavi, A., Kmet, T., Várkonyi-Kóczy, A.R.: Modeling Daily Pan Evaporation in Humid Climates Using Gaussian Process Regression. Preprints (2019), 2019070351. https://doi.org/10.20944/preprints201907.0351.v1

  53. Shamshirband, S., Hadipoor, M., Baghban, A., Mosavi, A., Bukor J., Várkonyi-Kóczy, A.R.: Developing an ANFIS-PSO Model to predict mercury emissions in Combustion Flue Gases. Preprints (2019), 2019070165. https://doi.org/10.20944/preprints201907.0165.v1

  54. Shamshirband, S., et al.: Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters. Eng. Appl. Comput. Fluid Mech. 13(1), 91–101 (2019)

    Google Scholar 

  55. Shamshirband, S., Mosavi, A., Rabczuk, T.: Particle swarm optimization model to predict scour depth around bridge pier. arXiv:1906.08863 (2019)

  56. Taherei Ghazvinei, P., et al.: Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Eng. Appl. Comput. Fluid Mech. 12(1), 738–749 (2018)

    Google Scholar 

  57. Torabi, M., et al.: A Hybrid clustering and classification technique for forecasting short-term energy consumption. Environ. Prog. Sustain. Energy 38(1), 66–76 (2019)

    Article  Google Scholar 

  58. Torabi, M., et al.: A hybrid machine learning approach for daily prediction of solar radiation. Lecture Notes in Networks and Systems, pp. 266–274. Springer (2019)

    Google Scholar 

  59. Reynel-Ávila, H.E., Bonilla-Petriciolet, A., Tapia-Picazo, J.C.: An artificial neural network-based NRTL model for simulating liquid-liquid equilibria of systems present in biofuels production. Fluid Phase Equilib. 483, 153–164 (2019)

    Article  Google Scholar 

  60. Camberos, S.A., et al.: Neuronal modeling of a two stages anaerobic digestion process for biofuels production. IFAC-PapersOnLine 51(13), 408–413 (2018)

    Article  Google Scholar 

  61. Sewsynker-Sukai, Y., Faloye, F., Kana, E.B.G.: Artificial neural networks: an efficient tool for modelling and optimization of biofuel production (a mini review). Biotechnol. Biotechnol. Equip. 31(2), 221–235 (2017)

    Article  Google Scholar 

  62. Mancini, M., Taavitsainen, V.M., Toscano, G.: Comparison of three different classification methods performance for the determination of biofuel quality by means of NIR spectroscopy. J. Chemom. (2019)

    Google Scholar 

  63. Feng, X., et al.: Rapid and non-destructive measurement of biofuel pellet quality indices based on two-dimensional near infrared spectroscopic imaging. Fuel 228, 197–205 (2018)

    Article  Google Scholar 

  64. Faizollahzadeh Ardabili, S., Najafi, B., Shamshirband, S.: Fuzzy logic method for the prediction of cetane number using carbon number, double bounds, iodic, and saponification values of biodiesel fuels. Environ. Prog. Sustain. Energy (2019)

    Google Scholar 

  65. Wong, K.I., et al.: Sparse Bayesian extreme learning machine and its application to biofuel engine performance prediction. Neurocomputing 149(Part A), 397–404 (2015)

    Article  Google Scholar 

  66. Faizollahzadeh Ardabili, S., et al.: Using SVM-RSM and ELM-RSM approaches for optimizing the production process of methyl and ethyl esters. Energies 11(11), 2889 (2018)

    Article  Google Scholar 

  67. Erdoğan, S., et al.: The best fuel selection with hybrid multiple-criteria decision making approaches in a CI engine fueled with their blends and pure biodiesels produced from different sources. Renew. Energy, 653–668 (2019)

    Article  Google Scholar 

  68. Deo, R.C., et al.: Adaptive Neuro-Fuzzy Inference System integrated with solar zenith angle for forecasting sub-tropical Photosynthetically Active Radiation. Food Energy Secur. 8(1), e00151 (2019)

    Article  Google Scholar 

  69. Ardabili, S., Mosavi, A., Mahmoudi, A., Gundoshmian, T.M., Nosratabadi, S., Var-konyi-Koczy, A.: Modelling temperature variation of mushroom growing hall using artificial neural networks. Preprints (2019)

    Google Scholar 

  70. Gundoshmian, T.M., Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Prediction of combine harvester performance using hybrid machine learning modeling and response surface methodology. Preprints (2019)

    Google Scholar 

  71. Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Systematic review of deep learning and machine learning models in biofuels research. Preprints (2019)

    Google Scholar 

  72. Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Advances in machine learning modeling reviewing hybrid and ensemble methods. Preprints (2019)

    Google Scholar 

  73. Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Building Energy information: demand and consumption prediction with Machine Learning models for sustainable and smart cities. Preprints (2019)

    Google Scholar 

  74. Ardabili, S., Mosavi, A., Dehghani, M., Varkonyi-Koczy, A.: Deep learning and machine learning in hydrological processes climate change and earth systems a systematic review. Preprints (2019)

    Google Scholar 

  75. Mohammadzadeh, D., Karballaeezadeh, N., Mohemmi, M., Mosavi, A., Várkonyi-Kóczy A.: Urban Train Soil-Structure Interaction Modeling And Analysis. Preprints (2019)

    Google Scholar 

  76. Mosavi, A., Ardabili, S., Varkonyi-Koczy, A.: List of deep learning models. Preprints (2019)

    Google Scholar 

  77. Nosratabadi, S., Mosavi, A., Keivani, R., Ardabili, S., Aram, F.: State of the art survey of deep learning and machine learning models for smart cities and urban sustainability. Preprints (2019)

    Google Scholar 

Download references

Acknowledgments

This publication has been supported by the Project: “Support of research and development activities of the J. Selye University in the field of Digital Slovakia and creative industry” of the Research & Innovation Operational Programme (ITMS code: NFP313010T504) co-funded by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mosavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ardabili, S., Mosavi, A., Várkonyi-Kóczy, A.R. (2020). Systematic Review of Deep Learning and Machine Learning Models in Biofuels Research. In: Várkonyi-Kóczy, A. (eds) Engineering for Sustainable Future. INTER-ACADEMIA 2019. Lecture Notes in Networks and Systems, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-030-36841-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36841-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36840-1

  • Online ISBN: 978-3-030-36841-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics