Skip to main content

Modelling Urban Transportation System Through Dynamic Performance Management

  • Chapter
  • First Online:
Strategic Planning for Urban Transportation

Part of the book series: System Dynamics for Performance Management & Governance ((SDPM,volume 3))

  • 424 Accesses

Abstract

This chapter develops a general framework to analyze urban transportation dynamics. This allows planners and decision makers to model urban transportation system according to the instrumental view of performance and the feedback relationships that link the key modules to one another. These are: travel demand, transport supply, travel mode choice, the economy, and the population. Each module is analyzed in depth, and various examples are provided to explain the criteria that should be followed when adapting the general framework to the urban system analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.estadistica.ec.gba.gov.ar/dpe/Estadistica/pobvivob.html.

  2. 2.

    These documents include: “Enmodo: Encuesta de movilidad domiciliaria, 2009-2010”; “Intrupuba: Investigaciòn de transporte urbano de Buenos Aires”; “Observatorio de Movilidad Urbana - Información disponible en línea, 2007”; “Comisión Nacional de Regulación del Transporte (CNRT). Red ferroviaria argentina, Informe estadístico 2010-2011”; “Academia Nacional de Ingeniería. Accesos a la Región Metropolitana de Buenos Aires. El transporte ferroviario y los subterraneos, 2011”.

  3. 3.

    The alternative investment options’ costs were estimated in the project: P. Bereciartua and D. Vereertbrugglen, C. Logascio, L. De Caro (2012), Proyecto “RMN + Territorio Inteligente” - Bereco SA winner of the “Concurso de Ideas – Proyecto “Soluciones para el transporte en el Corredor Norte de la Región Metropolitana Buenos Aires” organize by the four municipalities of the RMN (Vicente Lopez, San Isidro, San Fernando and Tigre) and the Fundación Metropolitana.

  4. 4.

    According to a relativist/holistic approach, “[n]o particular representation is superior to others in any absolute sense, although one could prove to be more effective. No model can claim absolute objectivity, for every model carries in it the modeler’s worldview. Models are not true or false, but lie on a continuum of usefulness” (Barlas and Carpenter 1990, p. 187).

References

  • Balci, O. (1994). Validation, verification and testing techniques throughout the life cycle of a simulation study. Annals of Operations Research, 53(1), 121–173.

    Article  Google Scholar 

  • Barbero, J., Castro, L., Abad, J., & Szenkman, P. (2011). Un transporte para la equidad y el crecimiento. Aportes para una estrategia nacional de movilidad y logística para la Argentina del Bicentenario. CIPPEC, Working paper n.79.

    Google Scholar 

  • Barlas, Y. (1989). Multiple tests for validation of system dynamics type of simulation models. European Journal of Operational Research, 42(1), 59–87.

    Article  Google Scholar 

  • Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review, 12, 183–210.

    Article  Google Scholar 

  • Barlas, Y., & Carpenter, S. (1990). Philosophical roots of model validation: Two paradigms. System Dynamics Review, 6(2), 148–166.

    Article  Google Scholar 

  • Bianchi, C. (2010). Improving performance and fostering accountability in the public sector through system dynamics modelling: From an ‘external’ to an ‘internal’ perspective. Systems Research and Behavioral Science, 27(4), 361–384.

    Article  Google Scholar 

  • Bianchi, C. (2016). Dynamic performance management. Berlin: Springer.

    Book  Google Scholar 

  • Black, J. A., Paez, A., & Suthanaya, P. A. (2002). Sustainable urban transportation: performance indicators and some analytical approaches. Journal of Urban Planning and Development, 128(4), 184–209.

    Article  Google Scholar 

  • Della Porta, A., & Gitto, A. (2013). Reforming public transport management in Italy: The continuous search for spending better. In M. Sargiacomo (Ed.), Public sector management in Italy (pp. 155–180). New York: McGraw-Hill.

    Google Scholar 

  • European Commission (2013). Guidelines. Developing and Implementing a Sustainable Urban Mobility Plan. Accessed at: http://capacitybuildingunhabitat.org/wp-content/uploads/workshops/2019-sustainable-transportation-in-asian-cities-for-a-greener-globe-and-better-life/Pre-course%20readings/A-1%20sump_guidelines_en.pdf

  • Fedele, P., Brusati, L., & Ianniello, M. (2016). Organizational underpinnings of interactive decision making: An empirical inquiry. International Journal of Public Sector Management, 29(4), 310–326.

    Article  Google Scholar 

  • Florian, M., Gaudry, M., & Lardinois, C. (1988). A two-dimensional framework for the understanding of transportation planning models. Transportation Research Part B: Methodological, 22(6), 411–419.

    Article  Google Scholar 

  • Forrester, J. W., & Senge, P. M. (1980). Tests for building confidence in system dynamics models. In A. A. Legasto, J. W. Forrester, & J. M. Lyneis (Eds.), System dynamics. Amsterdam: North-Holland.

    Google Scholar 

  • Golob, T. F. (1990). The dynamics of household travel time expenditures and car ownership decisions. Transportation Research Part A: General, 24(6), 443–463.

    Article  Google Scholar 

  • Haghshenas, H., Vaziri, M., & Gholamialam, A. (2015). Evaluation of sustainable policy in urban transportation using system dynamics and world cities data: A case study in Isfahan. Cities, 45, 104–115.

    Article  Google Scholar 

  • Kates, R. W., Clark, W. C., Corell, R., Hall, J. M., Jaeger, C. C., Lowe, I., McCarthy, J. J., Schellnhuber, H. J., Bolin, B., Dickson, N. M., & Faucheux, S. (2001). Sustainability science. Science, 292(5517), 641–642.

    Article  Google Scholar 

  • Kitamura, R. (1990). Panel analysis in transportation planning: An overview. Transportation Research Part A: General, 24(6), 401–415.

    Article  Google Scholar 

  • Litman, T. (2016). Well measured: Developing indicators for sustainable and livable transport planning. Victoria, BC: Victoria Transport Policy Institute.

    Google Scholar 

  • Manheim, M. L. (1979). Fundamentals of transportation systems analysis. Cambridge, MA: MIT Press.

    Google Scholar 

  • McNally, M. G. (2000). The four step model. In D. Hensher & K. Button (Eds.), Handbook of transport modelling (pp. 35–53). Bradford: Emerald Group Publishing Limited.

    Google Scholar 

  • Meadows, D., Randers, J., & Meadows, D. (2004). Limits to growth: the thirty year update. Chelsea Green, White River Junction, VT.

    Google Scholar 

  • Meyer, M. D., & Miller, E. J. (2001). Urban transportation planning: A decision oriented approach. New York, NY: McGraw-Hill.

    Google Scholar 

  • Nilsson, M., Jordan, A., Turnpenny, J., Hertin, J., Nykvist, B., & Russel, D. (2008). The use and non-use of policy appraisal tools in public policy making: An analysis of three European countries and the European Union. Policy Sciences, 41(4), 335–355.

    Article  Google Scholar 

  • Noto, G. (2017). Combining system dynamics and performance management to support sustainable urban transportation planning. Journal of Urban and Regional Analysis, 9(1), 51–71.

    Google Scholar 

  • Oppenheim, N. (1995). Urban travel demand modeling: From individual choices to general equilibrium. John Wiley and Sons.

    Google Scholar 

  • Pfaffenbichler, P., Emberger, G., & Shepherd, S. (2010). A system dynamics approach to land use transport interaction modelling: The strategic model MARS and its application. System Dynamics Review, 26(3), 262–282.

    Article  Google Scholar 

  • Radaelli, C. M. (2005). Diffusion without convergence: How political context shapes the adoption of regulatory impact assessment. Journal of European Public Policy, 12(5), 924–943.

    Article  Google Scholar 

  • Saujot, M., De Lapparent, M., Arnaud, E., & Prados, E. (2016). Making land use—Transport models operational tools for planning: From a top-down to an end-user approach. Transport Policy, 49, 20–29.

    Article  Google Scholar 

  • Shepherd, S. P. (2014). A review of system dynamics models applied in transportation. Transportmetrica B: Transport Dynamics, 2(2), 83–105.

    Google Scholar 

  • Sterman, J. D. (1984). Appropriate summary statistics for evaluating the historical fit of system dynamics models. Dynamica, 10(2), 51–66.

    Google Scholar 

  • Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. London: McGraw-Hill.

    Google Scholar 

  • Sterman, J. D. (2002). All models are wrong: Reflections on becoming a systems scientist. System Dynamics Review, 18, 501–531.

    Article  Google Scholar 

  • Wang, J., Lu, H., & Peng, H. (2008). System dynamics model of urban transportation system and its application. Journal of Transportation Systems Engineering and Information Technology, 8(3), 83–89.

    Article  Google Scholar 

  • Wegener, M. (2011). From macro to micro—How much micro is too much? Transport Reviews, 31(2), 161–177.

    Article  Google Scholar 

  • Weisbrod, G., Cutler, D., & Duncan, C. (2009). Economic impact of public transportation investment. American Public Transportation Association. Retrieved from www.apta.com

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noto, G. (2020). Modelling Urban Transportation System Through Dynamic Performance Management. In: Strategic Planning for Urban Transportation. System Dynamics for Performance Management & Governance, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-36883-8_4

Download citation

Publish with us

Policies and ethics