Skip to main content

Polylogarithm Identities, Cluster Algebras and the \(\mathcal {N} = 4\)  Supersymmetric Theory

  • Conference paper
  • First Online:
Periods in Quantum Field Theory and Arithmetic (ICMAT-MZV 2014)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 314))

  • 577 Accesses

Abstract

Scattering amplitudes in \(\mathcal {N} = 4\) super-Yang Mills theory can be computed to higher perturbative orders than in any other four-dimensional quantum field theory. The results are interesting transcendental functions. By a hidden symmetry (dual conformal symmetry) the arguments of these functions have a geometric interpretation in terms of configurations of points in \(\mathbb {CP}^3\) and they turn out to be cluster coordinates. We briefly introduce cluster algebras and discuss their Poisson structure and the Sklyanin bracket. Finally, we present a \(40\)-term trilogarithm identity which was discovered by accident while studying the physical results.

Expanded version of a talk given at the Opening Workshop of the Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory, organized by José I. Burgos Gil, Kurusch Ebrahimi-Fard, D. Ellwood, Ulf Kühn, Dominique Manchon and P. Tempesta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Analyticity survives after adding quantum corrections, but factorization becomes more subtle in case there are infrared divergences (see Ref. [13]). Since scattering amplitudes in gauge theories are infrared divergent, exploiting factorization at loop level seems to be much harder.

  2. 2.

    The sum over particle histories is not well-defined mathematically. Nevertheless, we can use it formally to compute the perturbative expansion. A similar statement holds for a string theory, where we sum over string histories also called worldsheets.

  3. 3.

    A similar construction can be done for Minkowski space \(\mathbb {M}\) instead, in which case we obtain the Penrose’s twistor space (see Ref. [58]).

  4. 4.

    Here we are presented a flipped version of the quiver and with the arrows reversed with respect to the quivers of Refs. [40, 51].

  5. 5.

    This holds in many explicit examples, but I have not found a proof in the literature.

  6. 6.

    Any conic is determined by five points. Given four points there is an infinity of conics which contain them.

References

  1. Alday, L.F., Maldacena, J.M.: Gluon scattering amplitudes at strong coupling. JHEP 0706, 064 (2007)

    Google Scholar 

  2. Anastasiou, C., Dixon, L., Bern, Z., Kosower, D.A.: Planar amplitudes in maximally supersymmetric yang-mills theory. Phys. Rev. Lett. 91(25) (2003)

    Google Scholar 

  3. Anastasiou, C., Brandhuber, A., Heslop, P., Khoze, V.V., Spence, B., et al.: Two-loop polygon wilson loops in n \(=\) 4 SYM. JHEP 0905, 115 (2009)

    Article  MathSciNet  Google Scholar 

  4. Arkani-Hamed, N., Bourjaily, J.L., Cachazo, F., Caron-Huot, S., Trnka, J.: The all-loop integrand for scattering amplitudes in planar n \(=\) 4 SYM. JHEP 1101, 041 (2011)

    Article  MathSciNet  Google Scholar 

  5. Arkani-Hamed, N., Bourjaily, J.L., Cachazo, F., Goncharov, A.B., Postnikov, A., et al.: Scattering Amplitudes and the Positive Grassmannian (2012)

    Google Scholar 

  6. Arkani-Hamed, N., Cachazo, F., Cheung, C., Kaplan, J.: A duality for the s matrix. JHEP 1003, 020 (2010)

    Article  MathSciNet  Google Scholar 

  7. Atiyah, M.F., Singer, I.M.: The index of elliptic operators on compact manifolds. Bull. Am. Math. Soc. 69(3), 422–434 (1963)

    Article  MathSciNet  Google Scholar 

  8. Atiyah, M.F., Hitchin, N.J., Drinfeld, V.G., Manin, Y.I.: Construction of instantons. Phys. Lett. A 65(3), 185–187 (1978)

    Article  MathSciNet  Google Scholar 

  9. Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras. iii: Upper bounds and double bruhat cells. Duke Math. J. 126(1), 1–52 (2005)

    Google Scholar 

  10. Bern, Z., Carrasco, J.J.M., Johansson, H., Kosower, D.A.: Maximally supersymmetric planar yang-mills amplitudes at five loops. Phys. Rev. D 76(12) (2007)

    Google Scholar 

  11. Bern, Z., Dixon, L.J., Kosower, D.A., Roiban, R., Spradlin, M., Vergu, C., Volovich, A.: Two-loop six-gluon maximally helicity violating amplitude in maximally supersymmetric yang-mills theory. Phys. Rev. D 78(4) (2008)

    Google Scholar 

  12. Bern, Z., Dixon, L.J., Kosower, D.A., Roiban, R., Spradlin, M., et al.: The two-loop six-gluon mhv amplitude in maximally supersymmetric yang-mills theory. Phys. Rev. D 78, 045007 (2008)

    Article  MathSciNet  Google Scholar 

  13. Bern, Z., Chalmers, G.: Factorization in one-loop gauge theory. Nucl. Phys. B 447(2–3), 465–518 (1995)

    Article  Google Scholar 

  14. Bern, Z., Czakon, M., Dixon, L.J., Kosower, D.A., Smirnov, V.A.: Four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric yang-mills theory. Phys. Rev. D 75(8) (2007)

    Google Scholar 

  15. Bern, Z., Dixon, L.J., Smirnov, V.A.: Iteration of planar amplitudes in maximally supersymmetric yang-mills theory at three loops and beyond. Phys. Rev. D 72, 085001 (2005)

    Article  MathSciNet  Google Scholar 

  16. Bloch, S.J.: Higher regulators, algebraic \(K\)-theory, and zeta functions of elliptic curves. CRM Monograph Series, vol. 11. American Mathematical Society, Providence, RI (2000)

    Google Scholar 

  17. Brandhuber, A., Heslop, P., Travaglini, G.: Mhv amplitudes in super-yang-mills and wilson loops. Nucl. Phys. B 794(1–2), 231–243 (2008)

    Article  MathSciNet  Google Scholar 

  18. Brink, L., Schwarz, J.H., Scherk, J.: Supersymmetric yang-mills theories. Nucl. Phys. B 121(1), 77–92 (1977)

    Google Scholar 

  19. Britto, R., Cachazo, F., Feng, B., Witten, E.: Direct proof of the tree-level scattering amplitude recursion relation in yang-mills theory. Phys. Rev. Lett. 94(18) (2005)

    Google Scholar 

  20. Broadhurst, D.J., Kreimer, D.: Knots and numbers in \({\phi }^{4}\) theory to 7 loops and beyond. Int. J. Mod. Phys. C 06(04), 519–524 (1995)

    Article  MathSciNet  Google Scholar 

  21. Caron-Huot, S.: Superconformal symmetry and two-loop amplitudes in planar n \(=\) 4 super yang-mills. JHEP 1112, 066 (2011)

    Article  MathSciNet  Google Scholar 

  22. Caron-Huot, S., He, S.: Jumpstarting the all-loop s-matrix of planar \( \cal{N}= {4} \) super yang-mills. J. High Energy Phys. 2012(7) (2012)

    Google Scholar 

  23. Caron-Huot, S.: Notes on the scattering amplitude/wilson loop duality. JHEP 1107, 058 (2011)

    Article  MathSciNet  Google Scholar 

  24. Coleman, S.R., Mandula, J.: All possible symmetries of the S matrix. Phys. Rev. 159(5), 1251–1256 (1967)

    Google Scholar 

  25. Dixon, L.J., Drummond, J.M., Duhr, C., Pennington, J.: The four-loop remainder function and multi-regge behavior at nnlla in planar \( \cal{N} =\) 4 super-yang-mills theory. J. High Energy Phys. 2014(6) (2014)

    Google Scholar 

  26. Dixon, L.J., Drummond, J.M., Henn, J.M.: Bootstrapping the three-loop hexagon. JHEP 1111, 023 (2011)

    Article  MathSciNet  Google Scholar 

  27. Dixon, L.J., Drummond, J.M., Henn, J.M.: Analytic result for the two-loop six-point NMHV amplitude in \( \cal{N}= {4} \) super yang-mills theory. J. High Energy Phys. 2012(1) (2012)

    Google Scholar 

  28. Dixon, L.J., Drummond, J.M., von Hippel, M., Pennington, J.: Hexagon functions and the three-loop remainder function. J. High Energy Phys. 2013(12) (2013)

    Google Scholar 

  29. Dixon, L.J., von Hippel, M.: Bootstrapping an NMHV amplitude through three loops. J. High Energy Phys. 2014(10) (2014)

    Google Scholar 

  30. Drummond, J.M., Papathanasiou, G., Spradlin, M.: A symbol of uniqueness: the cluster bootstrap for the 3-loop mhv heptagon. J. High Energy Phys. 2015(3) (2015)

    Google Scholar 

  31. Drummond, J.M., Henn, J., Korchemsky, G.P., Sokatchev, E.: The hexagon wilson loop and the bds ansatz for the six-gluon amplitude. Phys. Lett. B 662, 456–460 (2008)

    Article  MathSciNet  Google Scholar 

  32. Drummond, J.M., Henn, J., Korchemsky, G.P., Sokatchev, E.: Hexagon wilson loop \(=\) six-gluon mhv amplitude. Nucl. Phys. B 815, 142–173 (2009)

    Article  MathSciNet  Google Scholar 

  33. Drummond, J.M., Henn, J., Korchemsky, G.P., Sokatchev, E.: Dual superconformal symmetry of scattering amplitudes in n \(=\) 4 super-yang-mills theory. Nucl. Phys. B 828, 317–374 (2010)

    Article  MathSciNet  Google Scholar 

  34. Drummond, J.M., Henn, J., Smirnov, V.A., Sokatchev, E.: Magic identities for conformal four-point integrals. JHEP 0701, 064 (2007)

    Article  MathSciNet  Google Scholar 

  35. Drummond, J.M., Korchemsky, G.P., Sokatchev, E.: Conformal properties of four-gluon planar amplitudes and wilson loops. Nucl. Phys. B 795(1–2), 385–408 (2008)

    Article  MathSciNet  Google Scholar 

  36. Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér. (4) 42(6), 865–930 (2009)

    Google Scholar 

  37. Fomin, S., Zelevinsky, A.: Cluster algebras. i: Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Google Scholar 

  38. Fomin, S., Zelevinsky, A.: Cluster algebras. ii: Finite type classification. Invent. Math. 154(1), 63–121 (2003)

    Google Scholar 

  39. Fomin, S., Zelevinsky, A.: Cluster algebras. iv: coefficients. Compos. Math. 143(1), 112–164 (2007)

    Article  MathSciNet  Google Scholar 

  40. Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Poisson geometry. Mosc. Math. J. 3(3), 899–934, 1199 (2003). Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday

    Google Scholar 

  41. Golden, J., Goncharov, A.B., Spradlin, M., Vergu, C., Volovich, A.: Motivic amplitudes and cluster coordinates. JHEP 1401, 091 (2014)

    Article  Google Scholar 

  42. Golden, J., Paulos, M.F., Spradlin, M., Volovich, A.: Cluster polylogarithms for scattering amplitudes. J. Phys. A: Math. Theor. 47(47), 474005 (2014)

    Google Scholar 

  43. Golden, J., Spradlin, M.: An analytic result for the two-loop seven-point mhv amplitude in n \(=\) 4 SYM. J. High Energy Phys. 8, 2014 (2014)

    Google Scholar 

  44. Golden, J., Spradlin, M.: A cluster bootstrap for two-loop MHV amplitudes. J. High Energy Phys. 2015(2) (2015)

    Google Scholar 

  45. Goncharov, A.B.: Geometry of configurations, polylogarithms, and motivic cohomology. Adv. Math. 114(2), 197–318 (1995)

    Article  MathSciNet  Google Scholar 

  46. Goncharov, A.B., Spradlin, M., Vergu, C., Volovich, A.: Classical polylogarithms for amplitudes and wilson loops. Phys. Rev. Lett. 105(15), 11 (2010)

    Google Scholar 

  47. Haag, R., Lopuszanski, J.T., Sohnius, M.: All possible generators of supersymmetries of the s matrix. Nucl. Phys. B 88(2), 257 (1975)

    Article  MathSciNet  Google Scholar 

  48. Hodges, A.: Eliminating spurious poles from gauge-theoretic amplitudes (2009)

    Google Scholar 

  49. ’t Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72(3), 461—473 (1974)

    Google Scholar 

  50. Huang, Y.-T., Wen, C., Xie, D.: The positive orthogonal grassmannian and loop amplitudes of abjm. J. Phys. A: Math. Theor. 47(47), 474008 (2014)

    Article  MathSciNet  Google Scholar 

  51. Keller, B.: Cluster algebras, quiver representations and triangulated categories. In: Triangulated Categories. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  52. Kotikov, A.V., Lipatov, L.N., Onishchenko, A.I., Velizhanin, V.N.: Three-loop universal anomalous dimension of the wilson operators in n \(=\) 4 susy yang-mills model. Phys. Lett. B 595(1–4), 521–529 (2004)

    Article  MathSciNet  Google Scholar 

  53. Maldacena, J.: The large-n limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38(4), 1113–1133 (1999)

    Article  MathSciNet  Google Scholar 

  54. Mason, L., Skinner, D.: Dual superconformal invariance, momentum twistors and grassmannians. J. High Energy Phys. 2009(11), 045 (2009)

    Article  MathSciNet  Google Scholar 

  55. Mason, L.J., Skinner, D.: The complete planar s-matrix of n \(=\) 4 SYM as a wilson loop in twistor space. JHEP 1012, 018 (2010)

    Google Scholar 

  56. Ovsienko, V.: Cluster superalgebras (2015)

    Google Scholar 

  57. Parke, S.J., Taylor, T.R.: Amplitude for n-gluon scattering. Phys. Rev. Lett. 56, 2459–2460 (1986)

    Google Scholar 

  58. Penrose, R.: Twistor algebra. J. Math. Phys. 8, 345 (1967)

    Article  MathSciNet  Google Scholar 

  59. Schnetz, O.: Quantum periods: a census of \(\phi ^4\)-transcendentals. Commun. Number Theory Phys. 4(1), 1–47 (2010)

    Article  MathSciNet  Google Scholar 

  60. Scott, J.S.: Grassmannians and cluster algebras. Proc. Lond. Math. Soc. III. Ser. 92(2), 345–380 (2006)

    Google Scholar 

  61. Witten, E.: Quantum field theory and the jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)

    Article  MathSciNet  Google Scholar 

  62. Witten, E.: Monopoles and four-manifolds. Math. Res. Lett. 1(6), 769–796 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

First, I would like to thank the organizers of the Opening Workshop of the Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory: José I. Burgos Gil, Kurusch Ebrahimi-Fard, D. Ellwood, Ulf Kühn, Dominique Manchon and P. Tempesta.

I would also like to thank the participants and particularly Frédéric Chapoton and Herbert Gangl for discussions during the opening workshop Numbers and Physics (NAP2014). Finally, I am grateful to my coauthors in Refs. [41, 46] for collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Vergu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vergu, C. (2020). Polylogarithm Identities, Cluster Algebras and the \(\mathcal {N} = 4\)  Supersymmetric Theory. In: Burgos Gil, J., Ebrahimi-Fard, K., Gangl, H. (eds) Periods in Quantum Field Theory and Arithmetic. ICMAT-MZV 2014. Springer Proceedings in Mathematics & Statistics, vol 314. Springer, Cham. https://doi.org/10.1007/978-3-030-37031-2_7

Download citation

Publish with us

Policies and ethics