Skip to main content

Physiology of the Respiratory Drive in ICU Patients: Implications for Diagnosis and Treatment

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2020

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

Abstract

The aim of this chapter is to discuss the physiology of respiratory drive and techniques to monitor and modulate drive, as relevant to ICU patients. Respiratory drive is the intensity of the output of the respiratory centers and determines the effort to breathe. A combination of chemical, mechanical, behavioral, and emotional factors contributes to respiratory drive. The most important receptors that provide feedback to the respiratory centers are central chemoreceptors sensitive to changes in pH in the cerebrospinal fluid. High and low respiratory drive can be present in critically ill patients under mechanical ventilation. High or low respiratory drive may worsen, or even cause lung injury and diaphragm injury. Several techniques are available to monitor respiratory drive in critically ill patients, including clinical evaluation, diaphragm electromyography, the airway occlusion pressure (P 0.1), and transdiaphragmatic pressure. Monitoring and modulating respiratory drive may limit the clinical impact of high or low respiratory drive on the lungs and diaphragm. Potential strategies to modulate respiratory drive towards physiological levels include adaptation of ventilator inspiratory support, medication (e.g., opioids, sedatives), and extracorporeal CO2 removal. The impact of modulating respiratory drive on patient outcome requires further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Vries H, Jonkman A, Shi ZH, Spoelstra-De Man A, Heunks L. Assessing breathing effort in mechanical ventilation: physiology and clinical implications. Ann Transl Med. 2018;6:387.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Del Negro CA, Funk GD, Feldman JL. Breathing matters. Nat Rev Neurosci. 2018;19:351–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Telias I, Brochard L, Goligher EC. Is my patient’s respiratory drive (too) high? Intensive Care Med. 2018;44:1936–9.

    Article  PubMed  Google Scholar 

  4. Vaporidi K, Akoumianaka E, Telias I, Goligher EC, Brochard L, Georgopoulos D. Respiratory drive in critically ill patients: pathophysiology and clinical implications. Am J Respir Crit Care Med. 22 Aug 2019; https://doi.org/10.1164/rccm.201903-0596SO.

    Article  PubMed  Google Scholar 

  5. Dres M, Goligher EC, Heunks LMA, Brochard LJ. Critical illness-associated diaphragm weakness. Intensive Care Med. 2017;43:1441–52.

    Article  PubMed  Google Scholar 

  6. Feldman JL, Del Negro CA. Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci. 2006;7:232–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tobin M, Gardner W. Monitoring the control of breathing. In: Tobin M, editor. Principles and practice of intensive care monitoring. New York: McGraw-Hill; 1998. p. 415–64.

    Google Scholar 

  8. Petit JM, Milic-Emili J, Delhez L. Role of the diaphragm in breathing in conscious normal man: an electromyographic study. J Appl Physiol (1985). 1969;15:1101–6.

    Article  Google Scholar 

  9. Pellegrini M, Hedenstierna G, Roneus A, Segelsjö M, Larsson A, Perchiazzi G. The diaphragm acts as a brake during expiration to prevent lung collapse. Am J Respir Crit Care Med. 2017;195:1608–16.

    Article  PubMed  CAS  Google Scholar 

  10. Doorduin J, Roesthuis LH, Jansen D, Van Der Hoeven JG, Van Hees HWH, Heunks LMA. Respiratory muscle effort during expiration in successful and failed weaning from mechanical ventilation. Anesthesiology. 2018;129:490–501.

    Article  PubMed  Google Scholar 

  11. Shi ZH, Jonkman A, De Vries H, et al. Expiratory muscle dysfunction in critically ill patients: towards improved understanding. Intensive Care Med. 2019;45:1061–71.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Coates EL, Li A, Nattie EE. Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol (1985). 1993;75:5–14.

    Article  CAS  Google Scholar 

  13. Nielsen M, Smith H. Studies on the regulation of respiration in acute hypoxia: preliminary report. Acta Physiol Scand. 1951;22:44–6.

    Article  PubMed  CAS  Google Scholar 

  14. Prabhakar NR, Peng YJ. Peripheral chemoreceptors in health and disease. J Appl Physiol (1985). 2004;96:359–66.

    Article  CAS  Google Scholar 

  15. Biscoe TJ, Purves MJ, Sampson SR. Frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation. J Physiol. 1970;208:121–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Coleridge JCG, Coleridge HM. Afferent vagal c fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol. 1984;99:2–110.

    Google Scholar 

  17. Tipton MJ, Harper A, Paton JFR, Costello JT. The human ventilatory response to stress: rate or depth? J Physiol. 2017;595:5729–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Leitch AG, Mclennan JE, Balkenhol S, Mclaurin RL, Loudon RG. Ventilatory response to transient hyperoxia in head injury hyperventilation. J Appl Physiol (1985). 1980;49:52–8.

    Article  CAS  Google Scholar 

  19. Yoshida T, Nakahashi S, Nakamura MAM, et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort. Am J Respir Crit Care Med. 2017;196:590–601.

    Article  PubMed  Google Scholar 

  20. Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188:1420–7.

    Article  PubMed  Google Scholar 

  21. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195:438–42.

    Article  PubMed  Google Scholar 

  22. Hooijman PE, Beishuizen A, Witt CC, et al. Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients. Am J Respir Crit Care Med. 2015;191:1126–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Goligher EC, Fan E, Herridge MS, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192:1080–8.

    Article  PubMed  Google Scholar 

  24. Gea J, Zhu E, Gáldiz JB, et al. Functional consequences of eccentric contractions of the diaphragm. Arch Bronconeumol. 2008;45:68–74.

    Google Scholar 

  25. Schmidt M, Banzett RB, Raux M, et al. Unrecognized suffering in the ICU: addressing dyspnea in mechanically ventilated patients. Intensive Care Med. 2014;40:1–10.

    Article  PubMed  Google Scholar 

  26. Schmidt M, Kindler F, Gottfried SB, et al. Dyspnea and surface inspiratory electromyograms in mechanically ventilated patients. Intensive Care Med. 2013;39:1368–76.

    Article  PubMed  Google Scholar 

  27. Demoule A, Jung B, Prodanovic H, et al. Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact—a prospective study. Am J Respir Crit Care Med. 2013;188:213–9.

    Article  PubMed  Google Scholar 

  28. Goligher EC, Dres M, Fan E, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197:204–13.

    Article  PubMed  CAS  Google Scholar 

  29. Epstein SK. How often does patient-ventilator asynchrony occur and what are the consequences? Respir Care. 2011;56:25–38.

    Article  PubMed  Google Scholar 

  30. Costa R, Navalesi P, Cammarota G, et al. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist. Respir Physiol Neurobiol. 2017;244:10–6.

    Article  PubMed  CAS  Google Scholar 

  31. Sinderby C, Navalesi P, Beck J, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5:1433–6.

    Article  PubMed  CAS  Google Scholar 

  32. Sinderby C, Beck J, Spahija J, Weinberg J, Grassino AE. Voluntary activation of the human diaphragm in health and disease. J Appl Physiol. 1998;86:2146–58.

    Article  Google Scholar 

  33. Beck J, Sinderby C, Lindstrom LH, Grassino AE. Influence of bipolar esophageal electrode positioning on measurements of human crural diaphragm electromyogram. J Appl Physiol. 1996;81:1434–49.

    Article  PubMed  CAS  Google Scholar 

  34. Jansen D, Jonkman AH, Roesthuis L, et al. Estimation of the diaphragm neuromuscular efficiency index in mechanically ventilated critically ill patients. Crit Care. 2018;22:238.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jolley CJ, Luo YM, Steier J, Rafferty GF, Polkey MI, Moxham J. Neural respiratory drive and breathlessness in COPD. Eur Respir J. 2015;45:301–4.

    Article  Google Scholar 

  36. Whitelaw WA, Derenne J-P, Milic-Emili J. Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol. 1975;23:181–99.

    Article  PubMed  CAS  Google Scholar 

  37. Holle R, Schoene R, Pavlin E. Effect of respiratory muscle weakness on p0.1 induced by partial curarization. J Appl Physiol. 1984;57:1150–7.

    Article  PubMed  CAS  Google Scholar 

  38. Conti G, Cinnella G, Barboni E, Lemaire F, Harf A, Brochard L. Estimation of occlusion pressure during assisted ventilation in patients with intrinsic PEEP. Am J Respir Crit Care Med. 1996;154:907–12.

    Article  PubMed  CAS  Google Scholar 

  39. Telias I, Damiani F, Brochard L. The airway occlusion pressure (p0.1) to monitor respiratory drive during mechanical ventilation: increasing awareness of a not-so-new problem. Intensive Care Med. 2018;44:1532–5.

    Article  PubMed  Google Scholar 

  40. Rittayamai N, Beloncle F, Goligher EC, et al. Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Ann Intensive Care. 2017;7:100.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Alberti A, Gallo F, Fongaro A, Valenti S, Rossi A. P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med. 1995;21:547–53.

    Article  PubMed  CAS  Google Scholar 

  42. Mancebo J, Albaladejo P, Touchard D, et al. Airway occlusion pressure to titrate positive end-expiratory pressure in patients with dynamic hyperinflation. Anesthesiology. 2000;93:81–90.

    Article  PubMed  CAS  Google Scholar 

  43. Vivier E, Mekontso Dessap A, Dimassi S, et al. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med. 2012;38:796–803.

    Article  PubMed  Google Scholar 

  44. Heunks L, Ottenheijm C. Diaphragm-protective mechanical ventilation to improve outcomes in ICU patients? Am J Respir Crit Care Med. 2018;197:150–2.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Carteaux G, Cordoba-Izquierdo A, Lyazidi A, Heunks L, Thille AW, Brochard L. Comparison between neurally adjusted ventilatory assist and pressure support ventilation levels in terms of respiratory effort. Crit Care Med. 2016;44:503–11.

    Article  PubMed  Google Scholar 

  46. Doorduin J, Sinderby C, Beck J, Van Der Hoeven JG, Heunks L. Assisted ventilation in patients with acute respiratory distress syndrome. Anesthesiology. 2015;123:181–90.

    Article  PubMed  Google Scholar 

  47. Vaschetto R, Cammarota G, Colombo D, et al. Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2014;42:74–82.

    Article  PubMed  CAS  Google Scholar 

  48. Doorduin J, Nollet JL, Roesthuis LH, et al. Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes. Am J Respir Crit Care Med. 2017;195:1033–42.

    Article  PubMed  Google Scholar 

  49. Karagiannidis C, Hesselmann F, Fan E. Physiological and technical considerations of extracorporeal CO2 removal. Crit Care. 2019;23:75.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Crotti S, Bottino N, Spinelli E. Spontaneous breathing during veno-venous extracorporeal membrane oxygenation. J Thorac Dis. 2018;10(Suppl 5):S661–S9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. A. Heunks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jonkman, A.H., de Vries, H.J., Heunks, L.M.A. (2020). Physiology of the Respiratory Drive in ICU Patients: Implications for Diagnosis and Treatment. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2020. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-37323-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37323-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37322-1

  • Online ISBN: 978-3-030-37323-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics