Skip to main content

Sustainability in Textile Dyeing: Recent Developments

  • Chapter
  • First Online:
Sustainability in the Textile and Apparel Industries

Abstract

The textile industry is one of the largest contributors to environmental threats globally, producing 60 billion kilograms of fabric annually and using up to 9 trillion gallons of water. During coloration, large volumes of unfixed dye are released into water bodies, and approximately 10–15% of dye is lost into the environment as wastewater. In addition, because of competitiveness in textile industry production, an increase in the use of combinations of synthetic dyes has contributed to dye wastewater, creating an even larger volume of effluent. Dye can remain in the environment for an extended period of time because it has high thermal photostability and resists biodegradation. The release of dye effluent into seawater and river water is very destructive to living organisms, including humans and other animals. Therefore, it is important to study and raise awareness of alternative processes that reduce pollution loads. This chapter discusses recent developments that reduce unfixed color loads in effluent by use of various dyeing techniques such as modification of chemical pretreatments, the nanodyeing process, plasma-induced coloration, supercritical carbon dioxide dyeing, microwave-assisted dyeing and ultrasonic dyeing to the next level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ONU (2017) World population to hit 9.8 billion by 2050, despite nearly universal lower fertility rates – UN. http://www.un.org/apps/news/story.asp?NewsID=57028#.WeSCiFtL_IU. Accessed 15 Sep 2017

  2. Bauer C, Jacques P, Kalt A (2001) Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. J Photochem Photobiol A Chem 140:87–92. https://doi.org/10.1016/S1010-6030(01)00391-4

    Article  Google Scholar 

  3. Roy Choudhury AK (2013) Green chemistry and the textile industry. Text Prog 45:3–143. https://doi.org/10.1080/00405167.2013.807601

    Article  Google Scholar 

  4. Spengler JD, Sexton K (1983) Indoor air pollution: a public health perspective. Science (80-) 221:9–17

    Article  Google Scholar 

  5. Periyasamy AP (2019) Life cycle assessment of denim: a review. Colourage 66:45–49

    Google Scholar 

  6. Venkatesan H, Periyasamy AP (2017) Eco-fibers in the textile industry. In: Martínez LMT, Kharissova OV, Kharisov BI (eds) Handbook of ecomaterials. Springer International Publishing, Cham, pp 1–21

    Google Scholar 

  7. Periyasamy AP, Ramamoorthy SK, Lavate SS (2018) Eco-friendly denim processing. In: Martínez LMT, Kharissova OV, Kharisov BI (eds) Handbook of ecomaterials. Springer International Publishing, Cham, pp 1–21

    Google Scholar 

  8. Periyasamy AP, Militky J (2017) Denim processing and health hazards. In: Muthu SS (ed) Sustainability in denim. Woodhead Publishing, Cambridge, UK, pp 161–196

    Google Scholar 

  9. Periyasamy AP, Wiener J, Militky J (2017) Life-cycle assessment of denim. In: Muthu SS (ed) Sustainability in denim. Woodhead Publishing, Cambridge, UK, pp 83–110

    Google Scholar 

  10. Periyasamy AP, Militky J (2017) Denim and consumers’ phase of life cycle. In: Muthu SS (ed) Sustainability in denim. Woodhead Publishing, Cambridge, UK, pp 257–282

    Google Scholar 

  11. Khan S, Malik A (2014) Environmental and health effects of textile industry wastewater. In: Malik A, Grohmann E, Akhtar R (eds) Environmental deterioration and human health. Springer Netherlands, Dordrecht, pp 55–71

    Chapter  Google Scholar 

  12. Periyasamy AP, Zhao Y, Rwawiire S (2019) Environmental friendly textile processing. In: Martínez LMT, Kharissova OV, Kharisov BI (eds) Handbook of ecomaterials. Springer Nature, USA

    Google Scholar 

  13. Manu B, Chaudhari S (2002) Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresour Technol 82:225–231. https://doi.org/10.1016/S0960-8524(01)00190-0

    Article  Google Scholar 

  14. Scott A (2015) Cutting out textile pollution. Chem Eng News 93:18–19. https://doi.org/10.1021/cen-09341-bus1

    Article  Google Scholar 

  15. Periyasamy AP, Ramamoorthy SK, Rwawiire S, Zhao Y (2018) Sustainable wastewater treatment methods for textile industry. In: Muthu SS (ed) Sustainable innovations in apparel production. Springer Singapore, Singapore, pp 21–87

    Chapter  Google Scholar 

  16. Periyasamy AP, Rwahwire S, Zhao Y (2018) Environmental friendly textile processing. In: Martínez LMT, Kharissova OV, Kharisov BI (eds) Handbook of ecomaterials. Springer International Publishing, Cham, pp 1–38

    Google Scholar 

  17. Karthik T, Gopalakrishnan D (2015) Roadmap to sustainable textiles and clothing. In: Muthu SS (ed) Roadmap to sustainable textiles and clothing: environmental and social aspects of textiles and clothing supply chain. Springer Singapore, Singapore, pp 153–188

    Google Scholar 

  18. Slater K (2003) Protection of, or by, textiles from environmental damage. In: Environmental impact of textiles. Woodhead Publishing, Cambridge, UK, pp 161–177

    Google Scholar 

  19. Slater K (2003) Effects on textiles of natural exposure. In: Environmental impact of textiles. Woodhead Publishing, Cambridge, UK, pp 115–138

    Google Scholar 

  20. Slater K, Slater K (2003) 7 – Fabric treatment processes. In: Environmental impact of textiles. Woodhead Publishing, Cambridge, UK, pp 69–89

    Google Scholar 

  21. Slater K (2010) Fabric production. In: Environmental impact of textiles. Woodhead Publishing, Cambridge, UK, pp 61–68

    Google Scholar 

  22. Slater K (2003) Yarn production. In: Environmental impact of textiles. Woodhead Publishing, Cambridge, UK, pp 40–60

    Google Scholar 

  23. Slater K (2003) Textile fibre production. In: Environmental impact of textiles. Woodhead Publishing, Cambridge, UK, pp 23–39

    Google Scholar 

  24. Zaharia C, Suteu D, Muresan A, Muresan R, Popescu A (2009) Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide. Environ Eng Manag J 8:1359–1369

    Article  Google Scholar 

  25. Kumar PS, Narayan AS, Dutta A (2017) Textiles and clothing sustainability. In: Muthu SS (ed) Textiles and clothing sustainability, textile science and clothing technology. Springer Singapore, Singapore, pp 57–96

    Chapter  Google Scholar 

  26. Environmental Impact. https://truecostmovie.com/learn-more/environmental-impact/. Accessed 8 Aug 2019

  27. Ma W, Meng M, Yan S, Zhang S (2016) Salt-free reactive dyeing of betaine-modified cationic cotton fabrics with enhanced dye fixation. Chin J Chem Eng 24:175–179. https://doi.org/10.1016/j.cjche.2015.07.008

    Article  Google Scholar 

  28. Wang L, Ma W, Zhang S, Teng X, Yang J (2009) Preparation of cationic cotton with two-bath pad-bake process and its application in salt-free dyeing. Carbohydr Polym 78:602–608. https://doi.org/10.1016/j.carbpol.2009.05.022

    Article  Google Scholar 

  29. Periyasamy AP, Dhurai B, Thangamani K (2011) Salt-free dyeing - a new method of dyeing on lyocell/cotton blended fabrics with reactive dyes. Autex Res J 11:14–17

    Google Scholar 

  30. Periyasamy AP, Dhurai B (2011) Salt free dyeing: a new method of dyeing of Lyocell fabrics with reactive dyes. Pakistan Text J 60:40–43

    Google Scholar 

  31. Zhang Y, Zhang W (2015) Clean dyeing of cotton fiber using a novel nicotinic acid quaternary triazine cationic reactive dye: salt-free, alkali-free, and non-toxic by-product. Clean Techn Environ Policy 17:563–569. https://doi.org/10.1007/s10098-014-0821-9

    Article  Google Scholar 

  32. Periyasamy AP, Dhurai B (2011) Salt free dying. Asian Dye 8:47–50

    Google Scholar 

  33. Dong X, Gu Z, Hang C, Ke G, Jiang L, He J (2019) Study on the salt-free low-alkaline reactive cotton dyeing in high concentration of ethanol in volume. J Clean Prod 226:316–323. https://doi.org/10.1016/j.jclepro.2019.04.006

    Article  Google Scholar 

  34. Kulandainathan MA, Patil K, Muthukumaran A, Chavan RB (2007) Review of the process development aspects of electrochemical dyeing: its impact and commercial applications. Color Technol 123:143–151. https://doi.org/10.1111/j.1478-4408.2007.00082.x

    Article  Google Scholar 

  35. Božič M, Kokol V (2008) Ecological alternatives to the reduction and oxidation processes in dyeing with vat and sulphur dyes. Dyes Pigments 76:299–309. https://doi.org/10.1016/j.dyepig.2006.05.041

    Article  Google Scholar 

  36. Kulandainathan MA, Muthukumaran A, Patil K, Chavan RB (2007) Potentiostatic studies on indirect electrochemical reduction of vat dyes. Dyes Pigments 73:47–54. https://doi.org/10.1016/j.dyepig.2005.10.007

    Article  Google Scholar 

  37. Roessler A, Crettenand D, Dossenbach O, Marte W, Rys P (2002) Direct electrochemical reduction of indigo. Electrochim Acta 47:1989–1995. https://doi.org/10.1016/S0013-4686(02)00028-2

    Article  Google Scholar 

  38. Chavan RB (2015) Indigo dye and reduction techniques. In: Paul R (ed) Denim: manufacture, finishing and applications. Woodhead Publishing, Cambridge, UK, pp 37–67

    Google Scholar 

  39. Roessler A, Jin X (2003) State of the art technologies and new electrochemical methods for the reduction of vat dyes. Dyes Pigments 59:223–235. https://doi.org/10.1016/S0143-7208(03)00108-6

    Article  Google Scholar 

  40. Saikhao L, Setthayanond J, Karpkird T, Bechtold T, Suwanruji P (2018) Green reducing agents for indigo dyeing on cotton fabrics. J Clean Prod 197:106–113. https://doi.org/10.1016/j.jclepro.2018.06.199

    Article  Google Scholar 

  41. Chakraborty JN (2011) Sulphur dyes. In: Clark M (ed) Handbook of textile and industrial dyeing: principles, processes and types of dyes. Woodhead Publishing, Cambridge, UK, pp 466–485

    Google Scholar 

  42. Gulzar T, Farooq T, Kiran S, Ahmad I, Hameed A (2018) Green chemistry in the wet processing of textiles. In: Shahid-ul-Islam, Butola B (ed) The impact and prospects of green chemistry for textile technology. Woodhead Publishing, Cambridge, UK, pp 1–20

    Google Scholar 

  43. Vankar PS, Shanker R, Mahanta D, Tiwari SC (2008) Ecofriendly sonicator dyeing of cotton with Rubia cordifolia Linn. using biomordant. Dyes Pigments 76:207–212. https://doi.org/10.1016/j.dyepig.2006.08.023

    Article  Google Scholar 

  44. Montazer M, Dadashian F, Hemmatinejad N, Farhoudi K (2009) Treatment of wool with laccase and dyeing with madder. Appl Biochem Biotechnol 158:685–693. https://doi.org/10.1007/s12010-008-8403-0

    Article  Google Scholar 

  45. Vankar PS, Shanker R, Verma A (2007) Enzymatic natural dyeing of cotton and silk fabrics without metal mordants. J Clean Prod 15:1441–1450. https://doi.org/10.1016/j.jclepro.2006.05.004

    Article  Google Scholar 

  46. Vankar PS, Shanker R (2009) Eco-friendly pretreatment of silk fabric for dyeing with Delonix regia extract. Color Technol 125:155–160. https://doi.org/10.1111/j.1478-4408.2009.00189.x

    Article  Google Scholar 

  47. Liakopoulou-Kyriakides M, Tsatsaroni E, Laderos P, Georgiadou K (1998) Dyeing of cotton and wool fibres with pigments from Crocus sativus—effect of enzymatic treatment. Dyes Pigments 36:215–221. https://doi.org/10.1016/S0143-7208(97)00013-2

    Article  Google Scholar 

  48. Tsatsaroni E, Liakopoulou-Kyriakides M, Eleftheriadis I (1998) Comparative study of dyeing properties of two yellow natural pigments—effect of enzymes and proteins. Dyes Pigments 37:307–315. https://doi.org/10.1016/S0143-7208(97)00069-7

    Article  Google Scholar 

  49. Kumbasar EPA, Atav R, Bahtiyari MI (2009) Effects of alkali proteases on dyeing properties of various proteinous materials with natural dyes. Text Res J 79:517–525. https://doi.org/10.1177/0040517508090775

    Article  Google Scholar 

  50. ping ZR, sheng CZ (2011) Study on the natural dyeing of wool modified with enzyme. Fibers Polym 12:478–483. https://doi.org/10.1007/s12221-011-0478-5

    Article  Google Scholar 

  51. ASM R, Thilagavathi G (2011) Influence of enzyme and mordant treatments on the antimicrobial efficacy of natural dyes on wool materials. Asian Text J 1:138–144

    Article  Google Scholar 

  52. Parvinzadeh M (2007) Effect of proteolytic enzyme on dyeing of wool with madder. Enzym Microb Technol 40:1719–1722. https://doi.org/10.1016/j.enzmictec.2006.10.026

    Article  Google Scholar 

  53. El-Khatib HS, Badr AA, Diyab WA, Atia RM (2019) Part I: enzymatic treatment of bamboo, bamboo/cotton knitted fabric using Brewer’s yeast suspension. Alexandria Eng J. https://doi.org/10.1016/j.aej.2019.05.017

  54. Shang SM (2013) Process control in printing of textiles. In: Process control in textile manufacturing. Woodhead Publishing, Cambridge, UK, pp 339–362

    Google Scholar 

  55. Patel BH (2011) Natural dyes. In: Handbook of textile and industrial dyeing. Woodhead Publishing, Cambridge, UK, pp 395–424

    Google Scholar 

  56. Singh HB, Bharati KA (2018) Mordants and their applications. In: Singh HB, Bharati KA (eds) Handbook of natural dyes and pigments. Woodhead Publishing India, New Delhi, pp 18–28

    Google Scholar 

  57. Bide M (2013) Coloration, mordant dyes. In: Luo MR (ed) Encyclopedia of color science and technology. Springer New York, New York, pp 1–9

    Google Scholar 

  58. Hosseinnezhad M, Gharanjig K, Belbasi S, Saadati SHS, Saeb MR (2018) The use of sumac as a natural mordant in green production of Iranian carpet. Fibers Polym 19:1908–1912. https://doi.org/10.1007/s12221-018-7961-1

    Article  Google Scholar 

  59. Zheng GH, Bin FH, Liu GP (2011) Application of rare earth as mordant for the dyeing of ramie fabrics with natural dyes. Korean J Chem Eng 28:2148–2155. https://doi.org/10.1007/s11814-011-0090-9

    Article  Google Scholar 

  60. Mansour HF, Heffernan S (2011) Environmental aspects on dyeing silk fabric with sticta coronata lichen using ultrasonic energy and mild mordants. Clean Techn Environ Policy 13:207–213. https://doi.org/10.1007/s10098-010-0296-2

    Article  Google Scholar 

  61. Prabhu KH, Teli MD, Waghmare NG (2011) Eco-friendly dyeing using natural mordant extracted from Emblica officinalis G. fruit on cotton and silk fabrics with antibacterial activity. Fibers Polym 12:753–759. https://doi.org/10.1007/s12221-011-0753-5

    Article  Google Scholar 

  62. Chairat M, Bremner JB, Chantrapromma K (2007) Dyeing of cotton and silk yarn with the extracted dye from the fruit hulls of mangosteen, Garcinia mangostana Linn. Fibers Polym 8:613–619. https://doi.org/10.1007/BF02875998

    Article  Google Scholar 

  63. Chairat M, Darumas U, Bremner JB, Bangrak P (2011) Dyeing of cotton yarn with the aqueous extract of the leaves of Eupatorium odoratum L. in Thailand and associated extract toxicity studies. Color Technol 127:346–353. https://doi.org/10.1111/j.1478-4408.2011.00321.x

    Article  Google Scholar 

  64. Chattopadhyay SN, Pan NC, Roy AK, Saxena S, Khan A (2013) Development of natural dyed jute fabric with improved colour yield and UV protection characteristics. J Text Inst 104:808–818. https://doi.org/10.1080/00405000.2012.758352

    Article  Google Scholar 

  65. Grifoni D, Bacci L, Zipoli G, Albanese L, Sabatini F (2011) The role of natural dyes in the UV protection of fabrics made of vegetable fibres. Dyes Pigments 91:279–285. https://doi.org/10.1016/j.dyepig.2011.04.006

    Article  Google Scholar 

  66. Bruni S, Guglielmi V, Pozzi F, Mercuri AM (2011) Surface-enhanced Raman spectroscopy (SERS) on silver colloids for the identification of ancient textile dyes. Part II: pomegranate and sumac. J Raman Spectrosc 42:465–473. https://doi.org/10.1002/jrs.2736

    Article  Google Scholar 

  67. Haji A (2010) Functional dyeing of wool with natural dye extracted from Berberis vulgaris wood and Rumex Hymenosepolus root as biomordant. Iran J Chem Chem Eng 29:55–60

    Google Scholar 

  68. Prabhu KH, Teli MD (2014) Eco-dyeing using Tamarindus indica L. seed coat tannin as a natural mordant for textiles with antibacterial activity. J Saudi Chem Soc 18:864–872. https://doi.org/10.1016/j.jscs.2011.10.014

    Article  Google Scholar 

  69. Arroyo-Figueroa G, Ruiz-Aguilar GML, Cuevas-Rodriguez G, Sanchez GG (2011) Cotton fabric dyeing with cochineal extract: influence of mordant concentration. Color Technol 127:39–46. https://doi.org/10.1111/j.1478-4408.2010.00276.x

    Article  Google Scholar 

  70. Cunningham AB, Maduarta IM, Howe J, Ingram W, Jansen S (2011) Hanging by a thread: natural metallic mordant processes in traditional indonesian textiles/Di Ambang Kepunahan: proses mordan dengan menggunakan logam dari tumbuhan dalam pembuatan kain tradisional di Indonesia. Econ Bot 65:241–259. https://doi.org/10.1007/s12231-011-9161-4

    Article  Google Scholar 

  71. Ghoreishian SM, Maleknia L, Mirzapour H, Norouzi M (2013) Antibacterial properties and color fastness of silk fabric dyed with turmeric extract. Fibers Polym 14:201–207. https://doi.org/10.1007/s12221-013-0201-9

    Article  Google Scholar 

  72. Bai R, Yu Y, Wang Q, Yuan J, Fan X (2016) Effect of laccase on dyeing properties of polyphenol-based natural dye for wool fabric. Fibers Polym 17:1613–1620. https://doi.org/10.1007/s12221-016-5598-5

    Article  Google Scholar 

  73. Chen H, Wang Z, Lu X, Xie B (2008) Isolation and chemical characterisation of a polysaccharide from green tea (Camellia sinensis L.). J Sci Food Agric 88:2523–2528. https://doi.org/10.1002/jsfa.3375

    Article  Google Scholar 

  74. Yusuf M, Shahid M, Khan MI, Khan SA, Khan MA, Mohammad F (2015) Dyeing studies with henna and madder: a research on effect of tin (II) chloride mordant. J Saudi Chem Soc 19:64–72. https://doi.org/10.1016/j.jscs.2011.12.020

    Article  Google Scholar 

  75. Bhuiyan MAR, Islam A, Ali A, Islam MN (2017) Color and chemical constitution of natural dye henna (Lawsonia inermis L) and its application in the coloration of textiles. J Clean Prod 167:14–22. https://doi.org/10.1016/j.jclepro.2017.08.142

    Article  Google Scholar 

  76. Badri BM, Burkinshaw SM (1993) Dyeing of wool and nylon 6.6 with henna and lawsone. Dyes Pigments 22:15–25. https://doi.org/10.1016/0143-7208(93)80009-P

    Article  Google Scholar 

  77. Hijji YM, Barare B, Zhang Y (2012) Lawsone (2-hydroxy-1,4-naphthoquinone) as a sensitive cyanide and acetate sensor. Sensors Actuators B Chem 169:106–112. https://doi.org/10.1016/j.snb.2012.03.067

    Article  Google Scholar 

  78. Tommasi G (1920) Henna (Lawsonia inermis). Chemical constitution of lawsone. Gazz Chim Ital 50:12–16

    Google Scholar 

  79. Khatri A, White M (2015) Sustainable dyeing technologies. In: Blackburn R (ed) Sustainable apparel: production, processing and recycling. Woodhead publishing, Cambridge, UK, pp 135–160

    Google Scholar 

  80. Lehocký M, Mráček A (2006) Improvement of dye adsorption on synthetic polyester fibers by low temperature plasma pre-treatment. Czechoslov J Phys 56:B1277–B1282. https://doi.org/10.1007/s10582-006-0362-5

    Article  Google Scholar 

  81. Thomas H (2007) Plasma modification of wool. In: Plasma technologies for textiles. Woodhead publishing, Cambridge, UK, pp 228–246

    Google Scholar 

  82. Dupres V, Langevin D, Guenoun P, Checco A, Luengo G, Leroy F, Wertz PW, Downing DT, Naebe M, Cookson PG, Rippon J, Brady RP, Brack N, van Riessen G, Meade SJ, Dyer JM, Caldwell JP, Bryson WG (2007) Effects of plasma treatment of wool on the uptake of sulfonated dyes with different hydrophobic properties. Text Res J 78:34–40. https://doi.org/10.1016/0305-0491(89)90264-2

    Article  Google Scholar 

  83. Teli MD, Samanta KK, Pandit P, Basak S, Chattopadhyay SK (2015) Low-temperature dyeing of silk fabric using atmospheric pressure helium/nitrogen plasma. Fibers Polym 16:2375–2383. https://doi.org/10.1007/s12221-015-5166-4

    Article  Google Scholar 

  84. Rusu GB, Topala I, Borcia C, Dumitrascu N, Borcia G (2016) Effects of atmospheric-pressure plasma treatment on the processes involved in fabrics dyeing. Plasma Chem Plasma Process 36:341–354. https://doi.org/10.1007/s11090-015-9655-4

    Article  Google Scholar 

  85. Shahidi S, Ghoranneviss M, Moazzenchi B, Rashidi A, Dorranian D (2007) Effect of using cold plasma on dyeing properties of polypropylene fabrics. Fibers Polym 8:123–129. https://doi.org/10.1007/BF02908170

    Article  Google Scholar 

  86. Bulut MO, Sana NH (2018) Modification of woolen fabric with plasma for a sustainable production. Fibers Polym 19:1887–1897. https://doi.org/10.1007/s12221-018-8488-1

    Article  Google Scholar 

  87. Gorjanc M, Savić A, Topalić-Trivunović L, Mozetič M, Zaplotnik R, Vesel A, Grujić D (2016) Dyeing of plasma treated cotton and bamboo rayon with Fallopia japonica extract. Cellulose 23:2221–2228. https://doi.org/10.1007/s10570-016-0951-9

    Article  Google Scholar 

  88. Zhou L, Bai Y, Zhou H, Guo S (2019) Environmentally friendly textile production: continuous pretreatment of knitted cotton fabric with normal temperature plasma and padding. Cellulose 26:6943–6958. https://doi.org/10.1007/s10570-019-02508-8

    Article  Google Scholar 

  89. Kan CW, Wong CC (2013) Dyeing behavior of laser-treated polyester. Fibers Polym 14:230–235. https://doi.org/10.1007/s12221-013-0230-4

    Article  Google Scholar 

  90. Saus W, Knittel D, Schollmeyer E (1993) Dyeing of textiles in supercritical carbon dioxide. Text Res J 63:135–142. https://doi.org/10.1177/004051759306300302

    Article  Google Scholar 

  91. Montero GA, Smith CB, Hendrix WA, Butcher DL (2000) Supercritical fluid technology in textile processing: an overview. Ind Eng Chem Res 39:4806–4812. https://doi.org/10.1021/ie0002475

    Article  Google Scholar 

  92. Banchero M (2013) Supercritical fluid dyeing of synthetic and natural textiles – a review. Color Technol 129:2–17. https://doi.org/10.1111/cote.12005

    Article  Google Scholar 

  93. Zheng H, Xu Y, Zhang J, Xiong X, Yan J, Zheng L (2017) An ecofriendly dyeing of wool with supercritical carbon dioxide fluid. J Clean Prod 143:269–277. https://doi.org/10.1016/j.jclepro.2016.12.115

    Article  Google Scholar 

  94. Luo X, White J, Thompson R, Rayner C, Kulik B, Kazlauciunas A, He W, Lin L (2018) Novel sustainable synthesis of dyes for clean dyeing of wool and cotton fibres in supercritical carbon dioxide. J Clean Prod 199:1–10. https://doi.org/10.1016/j.jclepro.2018.07.158

    Article  Google Scholar 

  95. Zhang Y-Q, Wei X-C, Long J-J (2016) Ecofriendly synthesis and application of special disperse reactive dyes in waterless coloration of wool with supercritical carbon dioxide. J Clean Prod 133:746–756. https://doi.org/10.1016/j.jclepro.2016.05.187

    Article  Google Scholar 

  96. van der Kraan M, Fernandez Cid MV, Woerlee GF, Veugelers WJT, Witkamp GJ (2007) Dyeing of natural and synthetic textiles in supercritical carbon dioxide with disperse reactive dyes. J Supercrit Fluids 40:470–476. https://doi.org/10.1016/j.supflu.2006.07.019

    Article  Google Scholar 

  97. Penthala R, Kumar RS, Heo G, Kim H, Lee IY, Ko EH, Son Y-A (2019) Synthesis and efficient dyeing of anthraquinone derivatives on polyester fabric with supercritical carbon dioxide. Dyes Pigments 166:330–339. https://doi.org/10.1016/j.dyepig.2019.03.027

    Article  Google Scholar 

  98. Babar AA, Bughio N, Peerzada MH, Naveed T, Dayo AQ (2019) Exhaust reactive dyeing of lyocell fabric with ultrasonic energy. Ultrason Sonochem 58:104611. https://doi.org/10.1016/j.ultsonch.2019.05.028

    Article  Google Scholar 

  99. Khatri Z, Memon MH, Khatri A, Tanwari A (2011) Cold pad-batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy. Ultrason Sonochem 18:1301–1307. https://doi.org/10.1016/j.ultsonch.2011.04.001

    Article  Google Scholar 

  100. Babar AA, Peerzada MH, Jhatial AK, Bughio N (2017) Pad ultrasonic batch dyeing of causticized lyocell fabric with reactive dyes. Ultrason Sonochem 34:993–999. https://doi.org/10.1016/j.ultsonch.2016.07.018

    Article  Google Scholar 

  101. Udrescu C, Ferrero F, Periolatto M (2014) Ultrasound-assisted dyeing of cellulose acetate. Ultrason Sonochem 21:1477–1481. https://doi.org/10.1016/j.ultsonch.2013.12.026

    Article  Google Scholar 

  102. Kamel MM, El-Shishtawy RM, Yussef BM, Mashaly H (2005) Ultrasonic assisted dyeing: III. Dyeing of wool with lac as a natural dye. Dyes Pigments 65:103–110. https://doi.org/10.1016/j.dyepig.2004.06.003

    Article  Google Scholar 

  103. Kamel MM, El-Shishtawy RM, Hanna HL, Ahmed NSE (2003) Ultrasonic-assisted dyeing: I. Nylon dyeability with reactive dyes. Polym Int 52:373–380. https://doi.org/10.1002/pi.1162

    Article  Google Scholar 

  104. Jatoi AW, Ahmed F, Khatri M, Tanwari A, Khatri Z, Lee H, Kim IS (2017) Ultrasonic-assisted dyeing of Nylon-6 nanofibers. Ultrason Sonochem 39:34–38. https://doi.org/10.1016/j.ultsonch.2017.04.010

    Article  Google Scholar 

  105. Kamel MM, Helmy HM, Mashaly HM, Kafafy HH (2010) Ultrasonic assisted dyeing: dyeing of acrylic fabrics C.I. Astrazon basic red 5BL 200%. Ultrason Sonochem 17:92–97. https://doi.org/10.1016/j.ultsonch.2009.06.001

    Article  Google Scholar 

  106. Peng L, Guo R, Jiang S, Lan J, He Y, Huang X (2015) Ultrasound-aided dyeing of cotton fabric with spirooxazines and photochromic properties. Fibers Polym 16:1312–1318. https://doi.org/10.1007/s12221-015-1312-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravin Prince Periyasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Periyasamy, A.P., Militky, J. (2020). Sustainability in Textile Dyeing: Recent Developments. In: Muthu, S., Gardetti, M. (eds) Sustainability in the Textile and Apparel Industries . Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-38545-3_2

Download citation

Publish with us

Policies and ethics