Skip to main content

Well Posedness of the Nearest Points Problem for Two Sets in Asymmetric Seminormed Spaces

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1145))

Included in the following conference series:

  • 511 Accesses

Abstract

In this paper we consider spaces with an asymmetric seminorm and continue to study weakly convex sets. If we consider the Minkowski functional of the epigraph of some convex function as a seminorm, then the results obtained for weakly convex sets can be applied to weakly convex functions whose epigraphs are weakly convex sets with respect to this seminorm. We consider two sets in an asymmetric seminormed space, one of which is weakly convex with respect to an asymmetric seminorm, and the other one is strongly convex with respect to the asymmetric seminorm. We study the nearest points (in the sense of seminorm) problem and prove that this problem is well posed. Well posedness is an important property in the optimization theory. If a minimization problem is well posed, then one can build stable numerical algorithms, used for finding the solution of the problem.

Supported by the Russian Foundation for Basic Research, grant 18-01-00209.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borodin, P.: On the convexity of \(n\)-chebyshev sets. Izv. RAN. Ser. Mat. 75(5), 19–46 (2011)

    Article  MathSciNet  Google Scholar 

  2. Clarke, F.H., Stern, R.J., Wolenski, P.R.: Proximal smoothness and lower–\(c^{2}\) property. J. Convex Anal. 2(1–2), 117–144 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Cobzas, S.: Separation of convex sets and best approximation in spaces with asymmetric norm. Quaestiones Math. 27(3), 275–296 (2004)

    Article  MathSciNet  Google Scholar 

  4. Cobzas, S.: Ekeland variational principle in asymmetric locally convex spaces. Topol. Appl. 159(10–11), 2558–2569 (2012)

    Article  MathSciNet  Google Scholar 

  5. Cobzas, S.: Functional Analysis in Asymmetric Normed Spaces. Birkhauser, Basel (2013)

    Book  Google Scholar 

  6. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  Google Scholar 

  7. Ivanov, G.E., Golubev, M.O.: Alternative theorem for differential games with strongly convex admissible control sets. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y., Malkova, V., Posypkin, M. (eds.) OPTIMA 2018. CCIS, vol. 974, pp. 321–335. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10934-9_23

    Chapter  Google Scholar 

  8. Ivanov, G., Golubev, M.: Strong and weak convexity in nonlinear differential games. IFAC-PapersOnLine 51, 13–18 (2018)

    Article  Google Scholar 

  9. Ivanov, G.E., Lopushanski, M.S., Golubev, M.O.: The nearest point theorem for weakly convex sets in asymmetric seminormed spaces. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y., Malkova, V., Posypkin, M. (eds.) OPTIMA 2018. CCIS, vol. 974, pp. 21–34. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10934-9_2

    Chapter  Google Scholar 

  10. Ivanov, G., Lopushanski, M.: Well-posedness of approximation and optimization problems for weakly convex sets and functions. J. Math. Sci. (United States) 209, 66–87 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Ivanov, G.E.: On well posed best approximation problems for a nonsymmetric seminorm. J. Convex Anal. 20(2), 501–529 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Ivanov, G.E.: Continuity and selections of the intersection operator applied to nonconvex sets. J. Convex Anal. 22(4), 939–962 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Ivanov, G.E.: Weak convexity of sets and functions in a banach space. J. Convex Anal. 22(2), 365–398 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Ivanov, G.E., Lopushanski, M.S.: Separation theorem for nonconvex sets and its applications. Fundam. Appl. Math. 21(4), 23–65 (2016)

    MathSciNet  Google Scholar 

  15. Ivanov, G.E., Lopushanski, M.S.: Separation theorems for nonconvex sets in spaces with non-symmetric seminorm. J. Math. Inequalities Appl. 20(3), 737–754 (2017)

    Article  MathSciNet  Google Scholar 

  16. Ivanov, G.: Weak convexity of functions and the infimal convolution. J. Convex Anal. 23, 719–732 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Ivanov, G., Thibault, L.: Infimal convolution and optimal time control problem ii: limiting subdifferential. Set-Valued Variational Anal. 25(3), 517–542 (2017)

    Article  MathSciNet  Google Scholar 

  18. Ivanov, G., Thibault, L.: Infimal convolution and optimal time control problem i: Fréchet and proximal subdifferentials. Set-Valued Variational Anal. 26, 581–606 (2018)

    Article  MathSciNet  Google Scholar 

  19. Ivanov, G., Thibault, L.: Infimal convolution and optimal time control problem iii: minimal time projection set. SIAM J. Optim. 28(1), 30–44 (2018)

    Article  MathSciNet  Google Scholar 

  20. Ivanov, G., Thibault, L.: Well-posedness and subdifferentials of optimal value and infimal convolution. Set-Valued Variational Anal. 27, 841–861 (2019)

    Article  MathSciNet  Google Scholar 

  21. Jordan-Pérez, N., Sánchez-Perez, E.: Extreme points and geometric aspects of compact convex sets in asymmetric normed spaces. Topol. Appl. 203, 15–21 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Lopushanski, M.: Weakly convex sets in asymmetric normed spaces. In: Abstracts of the International Conference “Constructive Nonsmooth Analysis and Related Topics” Dedicated to the Memory of Professor V. F. Demyanov, pp. 34–38. Sankt-Petersburg (2017)

    Google Scholar 

  23. Lopushanski, M.S.: Normal regularity of weakly convex sets in asymmetric normed spaces. J. Convex Anal. 25(3), 737–758 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231–5249 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana S. Lopushanski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lopushanski, M.S. (2020). Well Posedness of the Nearest Points Problem for Two Sets in Asymmetric Seminormed Spaces. In: Jaćimović, M., Khachay, M., Malkova, V., Posypkin, M. (eds) Optimization and Applications. OPTIMA 2019. Communications in Computer and Information Science, vol 1145. Springer, Cham. https://doi.org/10.1007/978-3-030-38603-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38603-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38602-3

  • Online ISBN: 978-3-030-38603-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics