Skip to main content

Variable-Fidelity Performance-Driven Modeling

  • Chapter
  • First Online:
Performance-Driven Surrogate Modeling of High-Frequency Structures

Abstract

This chapter outlines the techniques for incorporating variable-fidelity simulation models into performance-driven modeling frameworks. The presented methods of combining the data of different fidelities include space mapping, co-kriging, as well as two-level Gaussian process regression. Utilization of variable-fidelity computational models enables further reduction of the surrogate model construction cost compared to single-fidelity constrained surrogates. The main focus is on potential computational benefits that can be achieved through the involvement of low-fidelity models, as well as practical issues one needs to take into account while working within variable-fidelity setups. Our considerations are illustrated using several examples of high-frequency structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandler, J. W., Biernacki, R. M., Chen, S. H., Grobelny, P. A., & Hemmers, R. H. (1994). Space mapping technique for electromagnetic optimization. IEEE Transactions on Microwave Theory and Techniques, 42(12), 2536–2544.

    Article  Google Scholar 

  • Bandler, J. W., Cheng, Q. S., Gebre-Mariam, D. H., Madsen, K., Pedersen, F., & Søndergaard, J. (2003). EM-based surrogate modeling and design exploiting implicit, frequency and output space mappings (pp. 1003–1006). Philadelphia: IEEE International Microwave Symposium Digest.

    Google Scholar 

  • Bandler, J. W., Cheng, Q. S., Dakroury, S. A., Mohamed, A. S., Bakr, M. H., Madsen, K., & Søndergaard, J. (2004). Space mapping: The state of the art. IEEE Transactions on Microwave Theory and Techniques, 52(1), 337–361.

    Article  Google Scholar 

  • Bandler, J. W., Koziel, S., & Madsen, K. (2008). Editorial—Surrogate modeling and space mapping for engineering optimization. Optimization and Engineering, 9(4), 307–310.

    Article  Google Scholar 

  • Chen, Y.-C., Chen, S.-Y., & Hsu, P. (2006). Dual-band slot dipole antenna fed by a coplanar waveguide. Proceedings of IEEE International Symposium on Antennas and Propagation (ISAP). Singapore. pp. 3589–3592.

    Google Scholar 

  • Couckuyt, I., Forrester, A., Gorissen, D., De Turck, F., & Dhaene, T. (2012). Blind Kriging: Implementation and performance analysis. Advances in Engineering Software, 49, 1–13.

    Article  Google Scholar 

  • CST Microwave Studio. (2018). CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany.

    Google Scholar 

  • Forrester, A. I. J., Sóbester, A., & Keane, A. J. (2007). Multi-fidelity optimization via surrogate modelling. Proceeding of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2088).

    Google Scholar 

  • Jacobs, J. P., & Koziel, S. (2014). Two-stage framework for efficient gaussian process modeling of antenna input characteristics. IEEE Transactions on Antennas and Propagation, 62(2), 706–713.

    Article  Google Scholar 

  • Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21, 345–383.

    Article  MathSciNet  Google Scholar 

  • Kennedy, M. C., & O’Hagan, A. (2000). Predicting the output from complex computer code when fast approximations are available. Biometrika, 87, 1–13.

    Article  MathSciNet  Google Scholar 

  • Kleijnen, J. P. C. (2009). Kriging metamodeling in simulation: A review. European Journal of Operational Research, 192(3), 707–716.

    Article  MathSciNet  Google Scholar 

  • Koziel, S. (2015). Fast simulation-driven antenna design using response-feature surrogates. International Journal of RF and Microwave Computer-Aided Engineering, 25(5), 394–402.

    Article  Google Scholar 

  • Koziel, S., & Bekasiewicz, A. (2017). On reduced-cost design-oriented constrained surrogate modeling of antenna structures. IEEE Antennas and Wireless Propagation Letters, 16, 1618–1621.

    Article  Google Scholar 

  • Koziel, S., & Pietrenko-Dabrowska, A. (2019). Performance-based nested surrogate modeling of antenna input characteristics. IEEE Transactions on Antennas and Propagation, 67(5), 2904–2912.

    Article  Google Scholar 

  • Koziel, S., Bandler, J. W., & Madsen, K. (2006). A space mapping framework for engineering optimization: Theory and implementation. IEEE Transactions on Microwave Theory and Techniques, 54(10), 3721–3730.

    Article  Google Scholar 

  • Koziel, S., Ogurtsov, S., Couckuyt, I., & Dhaene, T. (2013). Variable-fidelity electromagnetic simulations and co-kriging for accurate modeling of antennas. IEEE Transactions on Antennas and Propagation, 61(3), 1301–1308.

    Article  MathSciNet  Google Scholar 

  • Moin, P. (2010). Interpolation. In Fundamentals of engineering numerical analysis. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Morris, M. D., Mitchell, T. J., & Ylvisaker, D. (1993). Design and analysis of computer experiments: Use of derivatives in surface prediction. Technometrics, 35(3), 243–255.

    Article  MathSciNet  Google Scholar 

  • Qudrat-E-Maula, M., & Shafai, L. (2014). A dual band microstrip dipole antenna. International Symposium on Antenna Technology and Applied Electromagnetics, (ANTEM). Victoria. pp. 1–2.

    Google Scholar 

  • Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koziel, S., Pietrenko-Dabrowska, A. (2020). Variable-Fidelity Performance-Driven Modeling. In: Performance-Driven Surrogate Modeling of High-Frequency Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-38926-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38926-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38925-3

  • Online ISBN: 978-3-030-38926-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics