Skip to main content

Topical Delivery of Drugs for Skin Disease Treatment: Prospects and Promises

  • Chapter
  • First Online:
Green Nanoparticles

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 775 Accesses

Abstract

The application of nanoparticles and their novel properties are mostly used in different branches such as biotechnology, medical imaging, and catalysts as it offers safe and constant therapeutic effects in earlier days. Therefore, the plant-based products used in various applications of medicine and industry have been growing gradually. The nanoparticle synthesis was derived from various sources like plant-based biological molecules, polymer, bacteria, proteins, fungi, polypeptides, lipids, polysaccharides, , and nucleic acid which are nontoxic and eco-friendly. During the present years, the novel synthesis of nanoparticles shows promising prospects among the researcher based on certain attributes such as dose frequency, reduction in dose, specific site targeting, and increases in skin permeability. Recently, the new nanoparticle syntheses for the drug delivery system are mostly acquired from plant and milk proteins. This chapter hasĀ been explored the usage of nanocarrier molecules acting as a drug delivery system for the topical and transdermal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aljabali AAA, Akkam Y, Al Zoubi MS et al (2018) Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials 8:174

    ArticleĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818ā€“1822

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Angrasan JKVM, Subbaiya R (2014) Biosynthesis of copper nanoparticles by Vitis vinifera leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 3(9):768ā€“774

    Google ScholarĀ 

  • Ashour AA, Raafat D, El-Gowelli HM, El-Kamel AH (2015) Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties. Int J Nanomedicine 10:7207

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Austin LA, Mackey MA, Dreaden EC, El-Sayed MA (2014) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88(7):1391ā€“1417

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bagherzade G, Tavakoli MM, Namaei MH (2017) Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativa L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed 7(3):227ā€“233

    ArticleĀ  Google ScholarĀ 

  • Bansod SD, Bawaskar MS, Gade AK, Kumar Rai M (2015) Development of shampoo, soap and ointment formulated by green synthesized silver nanoparticles functionalized with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies. Inst Eng Technol Nanobiotechnol 9(4):165ā€“171

    Google ScholarĀ 

  • Bao W, Liu R, Wang Y et al (2015) PLGA-PLL-PEGLTf-based targeted nanoparticles drug delivery system enhance antitumor efficacy via intrinsic apoptosis pathway. Int J Nanomedicine 10:557ā€“566

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bell Ebanda Kedi P, Eyaā€™ane Meva F, Kotsedi L et al (2018) Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory of silver nanoparticle-mediated Selaginella myosurus aqueous extract. Int J Nanomedicine 13:8537ā€“8548

    ArticleĀ  Google ScholarĀ 

  • Berger CN et al (2010) Fresh fruits and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12:2385ā€“2397

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Burke KA, Yates EA, Legleiter J (2013) Biophysical, insights into how surfaces, including lipid membranes, modulate protein aggregation related to neurodegeneration. Front Neurol 4:17

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Couvreur P, Kante B, Lenaerts V et al (1980) Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles. J Pharmacol Sci 69:199ā€“202

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cushen M et al (2012) Nanotechnologies in the food industry: recent developments, risk, and regulation. Trends Food Sci Technol 24:30ā€“46

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Das VL, Thomas R, Varghee RT et al (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS11 isolated from industrialized area. 3 Biotech 4(2):121ā€“126

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • De Aragao AP, De Oliveira TM, Quelemes PV et al (2019) Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab J Chem 12(8):4182ā€“4188. https://doi.org/10.1016/j.arabjc.2016.04.014

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Doble M, Kruthiventi AK (2007) Green chemistry and engineering. Academic Press, Cambridge

    Google ScholarĀ 

  • Doyle ME (2006) Nanotechnology: a brief literature review. Food Research Institute Briefings, University of Wisconsin-Madison, Madison, p 10. Available at: http://www.wisc.edu/fri

    Google ScholarĀ 

  • Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5a and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9:1165ā€“1170

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Elbagory AM, Meyer M, Hussein AA (2017) Green synthesis of gold nanoparticles from south African plant extracts for the treatment of skin infection wounds. J Nanomed Nanotechnol 8:4

    Google ScholarĀ 

  • Ferraro V, Anton M, Sante-Lhoutellier V (2016) The sister Ī± helices of collagen, elastin, and keratin recovered from animal by product: functionality, bioactivity and trends of application. Trends Food Sci Technol 51:65ā€“75

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gan XW, Jiang L, Fang J, Zhao C et al (2019) Plant inspired adhesive and tough hydrogel based on Ag-lignin nanoparticles ā€“triggered dynamic redox catechol chemistry. Nat Commum 10:1ā€“10

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gannimani R, Perumal A, Krishna S et al (2014) Synthesis and antibacterial activity of silver and gold nanoparticles produced using aqueous seed extracts of Protorhus longifolia as a reducing agent. Dig J Nanomater Biostruct 9(4):1669ā€“1679

    Google ScholarĀ 

  • Grish K (2018) Neem (Azadirachta indica A. Juss) as a source for green synthesis of nanoparticles. Asian J Pharm Clin Res 11(3):15

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gupta M, Agrawal U, Vyas SP (2012) Nanocarrier-based topical drug delivery for the treatment of skin diseases. J Expert Opin Drug Deliv 9(7):783ā€“804

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hu X, Fagone P, Dong C, Su R et al (2018) Biological self-assembly and recognition used to synthesize and surface guide next generation of hybrid materials. ACS Appl Mater Interfaces 10(34):2837ā€“28381

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hubbell JA, Chilkoti A (2012) Nanomaterials for drug delivery. Science 337:303ā€“305

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Hung F, You M, Chen T et al (2014) Self-assembled hybrid nanoparticles for targeted co-delivery of two drugs into cancer cells. Chem Commun 50(23):3103ā€“3105

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jao D, Xue Y, Jethro M et al (2017) Protein-based drug delivery materials. Materials 10:517

    ArticleĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Kim DG, Jeong YI, Choi C et al (2006) Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int J Pharmacol 319:130ā€“138

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kulkarni SS (2013) Nanomedicine. Int Res Pharm 4(4):10ā€“16

    ArticleĀ  Google ScholarĀ 

  • Kumar CMK, Yugandhar P, Savithramma N (2016) Biological synthesis of silver nanoparticles from Adansonia digitata L. fruit pulp extract, characterization and its antimicrobial properties. J Intercult Ethnopharmacol 5(1):79ā€“85

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Laurent S, Forge D, Port M et al (2010) Magnetic iron oxide nanoparticles: Sythesis, stabilization,vectorization,physciochemical characterization,, and biological application. Chem Rev 110:2574ā€“2574

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mansoori GA (2003) Nanothermodynamics & phase transitions in nanosystem. In: The 4th international conference on fluids & thermal energy conversion, p 7

    Google ScholarĀ 

  • Min Chung I, Rahuman AA, Marimuthu S et al (2017) Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp Ther Med 14:18ā€“24

    Google ScholarĀ 

  • Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43:907ā€“914

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Moodley JS, Krishna SBN Pillay K et al (2018) Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci 9(9):015011

    Google ScholarĀ 

  • Moss JA (2013) HIV/AIDS review. Radiol Technol 84(3):247ā€“267

    PubMedĀ  Google ScholarĀ 

  • Mura S, Nicoles J et al (2013) Stimuli-responsive nanocarriers for the drug delivery. Nat Mater 12:991ā€“1003

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B: Biointerfaces 79(2):488ā€“493

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nadaroglu H, Onem H, Gungor AA (2017) Green synthesis of Ce2O3 NPs and determination of its antioxidant activity. IET Nanobiotechnol 11:411ā€“419

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Naraginiti S, Kumari PL, Das RK et al (2016) Amelioration of excision wounds by tropical application of green synthesized, formulated silver and gold nanoparticles in albino wistar rats. Mater Sci Eng C 62:293ā€“300

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ndeh NT, Maensri S, Maensri D (2017) The effect of green synthesized gold nanoparticles on rice germination and roots. Adv Nat Sci 8(3):035008

    Google ScholarĀ 

  • Panea, GP, Ficai A, Marin MM et al (2016) New collagen-Dextran-Zinc Oxide composite for wound dressing. Journal of Nanomaterials 2016, 34

    Google ScholarĀ 

  • Peng Z, Li S, Han X et al (2016) Determination of the composition, encapsulation efficiency, and loading capacity in protein drug delivery systems using circular dichroism spectroscopy. Anal Chim Acta 937:113ā€“118

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Prabhu SL, Umamaheseshwari A, Rajakumar S et al (2017) Development and evaluation of gel incorporated with synthesized silver nanoparticle from Ocimum gratissimum for the treatment of acne vulgaris. Am J Adv Drug Deliv 5(3):107ā€“117

    Google ScholarĀ 

  • Qadr I, Abirami H, Ilyas M et al (2016) Synthesis of plant mediated gold nanoparticles using Azima tetracantha Lam. Leaves extract and evaluation of their antimicrobial activities. Pharm J 8(4):1ā€“6

    Google ScholarĀ 

  • Rajashree S, Rose C (2018) Studies on an anti-aging formulation prepared using Aloe vera blended collagen and chitosan. Int J Pharm Sci Res 9(2):582ā€“588

    CASĀ  Google ScholarĀ 

  • Ramesh PS, Kokil T, Geetha D (2015) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim Acta A Mol Biomol Spectrosc 142:339ā€“343

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Salam HA, Rajiv P, Kamaraj M et al (2012) Plants: green route for Nanoparticle synthesis. Int Res J Biol Sci 1:85ā€“90

    Google ScholarĀ 

  • Senyigit T, Sonvico F, Barbieri S et al (2010) Lecithin/Chitosan nanoparticles of Clobetasol-17-propionate capable of accumulation in pig skin. J Control Release 142:368ā€“373

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shan M, Fawcett D, Sharma S, Tripathy SK, Poinern GE (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278ā€“7308

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sigmundsdottir H (2010) Improving topical treatments for skin diseases. Trends Pharmacol Sci 31:239ā€“245

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Silva LM, Hill LE, Figueriredo E, Gomes CL (2014) Delivery of phytochemicals of tropical fruit by products using Poly (DL-Lac-tide-co-glycolide)(PLGA) nanoparticles: synthesis, characterization and antimicrobial activity. Food Chem 165:362ā€“370

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Nanostruct 3:115ā€“122

    Google ScholarĀ 

  • Singh K, Panghal M, Kadyan S, Yadav JP (2014) Evaluation of antimicrobial activity of synthesized silver nanoparticles using Phyllanthus amarus and Tinospora cordifolia medicinal plants. J Nanomed Nanotechnol 5(6):250

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Singh P, Pandit S, Garnaes J et al (2018) Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomedicine 13:3571ā€“3591

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Son GH, Lee BJ et al (2017) Mechanism of drug release from advance drug formulations such as polymeric based drug delivery systems and lipid nanoparticles. J Pharm Investig 47(4):287ā€“296

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tan Q, Liu W, Guo C, Zhai G (2011) Preparation, and evaluation of quercetin-loaded lecithin ā€“chitosan nanoparticles for topical delivery. Int J Nanomed 6:1621ā€“1630

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Valli G, Suganya M (2015) Green synthesis of copper nanoparticles using Cassia fistula flower extract. J Bio Innov 4(5):162ā€“170

    Google ScholarĀ 

  • Veerasamy R, Xin TZ, Gunasagaran S et al (2014) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15(2):113ā€“120

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Verdun C, Brasseur F, Vranck H et al (1990) Tissue distribution of Doxorubicin associated with polyhexylcyanoacrylate nanoparticles. Cancer Chemother Pharmacol 26:13ā€“18

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vila A, Sanchez A, Tobio M et al (2002) Design of biodegradable particles for protein delivery. J Control Release 78:15ā€“24

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wei D, Qian W (2018) Facile synthesis of Ag and AU nanoparticles utilizing chitosan as mediator agent. Colloids Surf B Biointerfaces 62:136ā€“142

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Xia XX, Wang M, Lin Y et al (2014) Hydrophobic drug-triggered self-assembly of nanoparticles from silk elastinā€“like protein polymers for drug delivery. Biomacromolecules 15(3):908ā€“914

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yew YP, Shameli K, Miyake M et al (2020) Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: a review. Arab J Chem 13(1):2287ā€“2308

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgment

The authors express their gratitude to Dr. G. Viswanathan, Honorable Chancellor, VIT, Vellore, for all his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayathri Mahalingam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mani, A., Mahalingam, G. (2020). Topical Delivery of Drugs for Skin Disease Treatment: Prospects and Promises. In: Patra, J., Fraceto, L., Das, G., Campos, E. (eds) Green Nanoparticles. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-39246-8_9

Download citation

Publish with us

Policies and ethics