Skip to main content

Peptide Receptor Radionuclide Therapy

  • Chapter
  • First Online:
Clinical Nuclear Medicine
  • 1380 Accesses

Abstract

Peptide receptor radionuclide therapy (PRRT) uses, as a therapeutic target, the overexpression of somatostatin receptors (SSTRs) in neuroendocrine tumours (NETs). The radiopharmaceutical contains generally a somatostatin analogue, which binds somatostatin receptors, and a linking molecule (chelator), which binds the radioisotope: most commonly Lutetium-177 or Yttrium-90.

SSTR imaging must be performed in patients before starting PRRT to prove the SSTR-positive status of the tumour. Furthermore, [18F]F-FDG-PET may be useful to evaluate the metabolic activity of the tumour sites and can help to decide whether PRRT should be performed as a monotherapy or combined with more aggressive treatment. Required for the PRRT are good general condition, sufficient bone marrow function and renal function.

PRRT is indicated as a palliative treatment in patients with non-resectable metastatic NET with good SSTR expression if there is progression of disease after first-line treatment. Even in this late stage of disease, the majority of patients achieve a stable disease (5–77%) or objective response (14–75%). PRRT has been shown to be especially effective in patients with slow-growing, G1–G2 (well- or moderately differentiated) gastroenteropancreatic neuroendocrine tumours.

Common subacute adverse events after PPRT administration are fatigue, mild alopecia, hypo−/azoospermia, mild/moderate renal impairment and hematological abnormalities (11% severe haematotoxicity). Severe late toxicity such as myelodysplastic syndrome (2.35% of patients), acute leukaemia (1.1%) and nephrotoxicity (1.5%) is rare. Nephrotoxicity is more common in patients treated with Yttrium-90-labelled somatostatin analogues than with Lutetium-177 ones. Generally, PRRT is mostly well tolerated with rarely occurring severe adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yordanova A, Ahmadzadehfar H, Gonzalez-Carmona M, et al. A step-by-step clinical approach for the management of neuroendocrine Tumours. Horm Metab Res. 2017;49(2):77–85.

    Article  CAS  PubMed  Google Scholar 

  2. Yordanova A, Mayer K, Brossart P, et al. Safety of multiple repeated cycles of (177)Lu-octreotate in patients with recurrent neuroendocrine tumour. Eur J Nucl Med Mol Imaging. 2017;44(7):1207–14.

    Article  CAS  PubMed  Google Scholar 

  3. Bodei L, Mueller-Brand J, Baum RP, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40(5):800–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bodei L, Kidd M, Paganelli G, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015;42(1):5–19.

    Article  CAS  PubMed  Google Scholar 

  5. Delpassand ES, Samarghandi A, Zamanian S, et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE for patients with somatostatin receptor-expressing neuroendocrine tumors. Pancreas. 2014;43(4):518–25.

    Article  CAS  PubMed  Google Scholar 

  6. Ezziddin S, Attassi M, Yong-Hing CJ, et al. Predictors of long-term outcome in patients with well-differentiated gastroenteropancreatic neuroendocrine tumors after peptide receptor radionuclide therapy with 177Lu-octreotate. J Nucl Med. 2014;55(2):183–90.

    Article  CAS  PubMed  Google Scholar 

  7. Kwekkeboom DJ, de Herder WW, van Eijck CHJ, et al. Peptide receptor radionuclide therapy in patients with Gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med. 2010;40(2):78–88.

    Article  PubMed  Google Scholar 

  8. Kwekkeboom DJ, de Herder WW, Krenning EP. Somatostatin receptor-targeted radionuclide therapy in patients with Gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin N Am. 2011;40(1):173–85.

    Article  CAS  Google Scholar 

  9. Strosberg J, Wolin E, Chasen B, et al. NETTER-1 phase III in patients with midgut neuroendocrine tumors treated with 177Lu-Dotatate: efficacy and safety results. J Nucl Med. 2016;57(suppl 2):629.

    Google Scholar 

  10. Gupta SK, Singla S, Bal C. Renal and hematological toxicity in patients of neuroendocrine tumors after peptide receptor radionuclide therapy with 177Lu-DOTATATE. Cancer Biother Radiopharm. 2012;27(9):593–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kam BLR, Teunissen JJM, Krenning EP, et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39(Suppl 1):S103–12.

    Article  CAS  PubMed  Google Scholar 

  12. Sabet A, Ezziddin K, Pape U-F, et al. Long-term hematotoxicity after peptide receptor radionuclide therapy with 177Lu-octreotate. J Nucl Med. 2013;54(11):1857–61.

    Article  CAS  PubMed  Google Scholar 

  13. Sabet A, Ezziddin K, Pape U-F, et al. Long-term Hematotoxicity after peptide receptor radionuclide therapy with 177Lu-Octreotate. J Nucl Med. 2013;54(11):1857–61.

    Article  CAS  PubMed  Google Scholar 

  14. Sabet A, Haslerud T, Pape U-F, et al. Outcome and toxicity of salvage therapy with 177Lu-octreotate in patients with metastatic gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2014;41(2):205–10.

    Article  CAS  PubMed  Google Scholar 

  15. Salavati A, Puranik A, Kulkarni HR, et al. Peptide receptor radionuclide therapy (PRRT) of medullary and nonmedullary thyroid Cancer using radiolabeled somatostatin analogues. Semin Nucl Med. 2016;46(3):215–24.

    Article  PubMed  Google Scholar 

  16. Chan HS, de Blois E, Morgenstern A, et al. In vitro comparison of 213Bi- and 177Lu-radiation for peptide receptor radionuclide therapy. PLoS One. 2017;12(7):e0181473.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kubota A, Yamada Y, Kagimoto S, et al. Identification of somatostatin receptor subtypes and an implication for the efficacy of somatostatin analogue SMS 201-995 in treatment of human endocrine tumors. J Clin Invest. 1994;93(3):1321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Papotti M, Bongiovanni M, Volante M, et al. Expression of somatostatin receptor types 1-5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch. 2002;440(5):461–75.

    Article  CAS  PubMed  Google Scholar 

  19. Basu S, Dasgupta PS. Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol. 2000;102(2):113–24.

    Article  CAS  PubMed  Google Scholar 

  20. Brazeau P, Vale W, Burgus R, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973;179(4068):77–9.

    Article  CAS  PubMed  Google Scholar 

  21. Buscail L, Esteve JP, Saint-Laurent N, et al. Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms. Proc Natl Acad Sci U S A. 1995;92(5):1580–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar U, Sasi R, Suresh S, et al. Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells: a quantitative double-label immunohistochemical analysis. Diabetes. 1999;48(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  23. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20(3):157–98.

    Article  CAS  PubMed  Google Scholar 

  24. van Hagen PM, Krenning EP, Kwekkeboom DJ, et al. Somatostatin and the immune and haematopoetic system; a review. Eur J Clin Investig. 1994;24(2):91–9.

    Article  Google Scholar 

  25. Oberg KE, Reubi J-C, Kwekkeboom DJ, et al. Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy. Gastroenterology. 2010;139(3):742–53, 753.e1.

    Article  CAS  PubMed  Google Scholar 

  26. Caplin ME, Pavel M, Cwikla JB, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371(3):224–33.

    Article  CAS  PubMed  Google Scholar 

  27. Rinke A, Muller H-H, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group. J Clin Oncol. 2009;27(28):4656–63.

    Article  CAS  PubMed  Google Scholar 

  28. Kwekkeboom DJ, Bakker WH, Kooij PP, et al. 177Lu-DOTAOTyr3octreotate: comparison with 111In-DTPAooctreotide in patients. Eur J Nucl Med. 2001;28(9):1319–25.

    Article  CAS  PubMed  Google Scholar 

  29. Beykan S, Dam JS, Eberlein U, et al. (177)Lu-OPS201 targeting somatostatin receptors: in vivo biodistribution and dosimetry in a pig model. EJNMMI Res. 2016;6(1):50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dalm SU, Nonnekens J, Doeswijk GN, et al. Comparison of the therapeutic response to treatment with a 177Lu-labeled somatostatin receptor agonist and antagonist in preclinical models. J Nucl Med. 2016;57(2):260–5.

    Article  CAS  PubMed  Google Scholar 

  31. Reubi JC, Waser B, Macke H, et al. Highly increased 125I-JR11 antagonist binding in vitro reveals novel indications for sst2 targeting in human cancers. J Nucl Med. 2017;58(2):300–6.

    Article  CAS  PubMed  Google Scholar 

  32. Wild D, Fani M, Fischer R, et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J Nucl Med. 2014;55(8):1248–52.

    Article  CAS  PubMed  Google Scholar 

  33. Poeppel TD, Binse I, Petersenn S, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52(12):1864–70.

    Article  CAS  PubMed  Google Scholar 

  34. Wild D, Schmitt JS, Ginj M, et al. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging. 2003;30(10):1338–47.

    Article  CAS  PubMed  Google Scholar 

  35. Esser JP, Krenning EP, Teunissen JJM, et al. Comparison of (177)Lu-DOTA(0),Tyr(3)octreotate and (177)Lu-DOTA(0),Tyr(3)octreotide. Eur J Nucl Med Mol Imaging. 2006;33(11):1346–51.

    Article  CAS  PubMed  Google Scholar 

  36. Forrer F, Uusijärvi H, Waldherr C, et al. A comparison of (111)in-DOTATOC and (111)in-DOTATATE. Eur J Nucl Med Mol Imaging. 2004;31(9):1257–62.

    Article  CAS  PubMed  Google Scholar 

  37. Velikyan I, Sundin A, Sörensen J, et al. Quantitative and qualitative intrapatient comparison of 68Ga-DOTATOC and 68Ga-DOTATATE. J Nucl Med. 2014;55(2):204–10.

    Article  CAS  PubMed  Google Scholar 

  38. Anthony LB, Woltering EA, Espenan GD, et al. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med. 2002;32(2):123–32.

    Article  PubMed  Google Scholar 

  39. Yordanova A, Eppard E, Kurpig S, et al. Theranostics in nuclear medicine practice. Onco Targets Ther. 2017;10:4821–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Romer A, Seiler D, Marincek N, et al. Somatostatin-based radiopeptide therapy with 177Lu-DOTA-TOC versus 90Y-DOTA-TOC in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2014;41(2):214–22.

    Article  CAS  PubMed  Google Scholar 

  41. Chinol M, Bodei L, Cremonesi M, et al. Receptor-mediated radiotherapy with 90Y-DOTA-DPhe1-Tyr3-octreotide. Semin Nucl Med. 2002;32(2):141–7.

    Article  PubMed  Google Scholar 

  42. Kratochwil C, López-Benítez R, Mier W, et al. Hepatic arterial infusion enhances DOTATOC radiopeptide therapy in patients with neuroendocrine liver metastases. Endocr Relat Cancer. 2011;18(5):595–602.

    Article  CAS  PubMed  Google Scholar 

  43. Chan HS, Konijnenberg MW, Daniels T, et al. Improved safety and efficacy of (213)bi-DOTATATE-targeted alpha therapy of somatostatin receptor-expressing neuroendocrine tumors in mice pre-treated with L-lysine. EJNMMI Res. 2016;6(1):83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kratochwil C, Giesel FL, Bruchertseifer F, et al. (2)(1)(3)bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation. Eur J Nucl Med Mol Imaging. 2014;41(11):2106–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miederer M, Henriksen G, Alke A, et al. Preclinical evaluation of the alpha-particle generator nuclide 225Ac for somatostatin receptor radiotherapy of neuroendocrine tumors. Clin Cancer Res. 2008;14(11):3555–61.

    Article  CAS  PubMed  Google Scholar 

  46. Pavel M, O'Toole D, Costa F, et al. ENETS consensus guidelines update for the Management of Distant Metastatic Disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology. 2016;103(2):172–85.

    Article  CAS  PubMed  Google Scholar 

  47. Strosberg JR, Halfdanarson TR, Bellizzi AM, et al. The north American neuroendocrine tumor society consensus guidelines for surveillance and medical Management of Midgut Neuroendocrine Tumors. Pancreas. 2017;46(6):707–14.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bodei L, Cremonesi M, Grana C, et al. Receptor radionuclide therapy with 90Y-DOTA0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31(7):1038–46.

    Article  CAS  PubMed  Google Scholar 

  49. Hicks RJ, Kwekkeboom DJ, Krenning E, et al. ENETS consensus guidelines for the standards of Care in Neuroendocrine Neoplasia. Neuroendocrinology. 2017;105(3):295–309.

    Article  CAS  PubMed  Google Scholar 

  50. Baum RP, Kulkarni HR. Theranostics. Theranostics. 2012;2(5):437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chan DL, Pavlakis N, Schembri GP, et al. Dual somatostatin receptor/FDG PET/CT imaging in metastatic neuroendocrine Tumours. Theranostics. 2017;7(5):1149–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hindié E. The NETPET score. Theranostics. 2017;7(5):1159–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Krenning EP, Valkema R, Kooij PP, et al. Scintigraphy and radionuclide therapy with indium-111-labelled-diethyl triamine penta-acetic acid-D-Phe1-octreotide. Ital J Gastroenterol Hepatol. 1999;31(Suppl 2):S219–23.

    PubMed  Google Scholar 

  54. Kwekkeboom DJ, Teunissen JJ, Bakker WH, et al. Radiolabeled somatostatin analog 177Lu-DOTA0,Tyr3octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005;23(12):2754–62.

    Article  CAS  PubMed  Google Scholar 

  55. Bahri H, Laurence L, Edeline J, et al. High prognostic value of 18F-FDG PET for metastatic gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2014;55(11):1786–90.

    Article  CAS  PubMed  Google Scholar 

  56. Binderup T, Knigge U, Loft A, et al. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16(3):978–85.

    Article  CAS  PubMed  Google Scholar 

  57. Ezziddin S, Adler L, Sabet A, et al. Prognostic stratification of metastatic gastroenteropancreatic neuroendocrine neoplasms by 18F-FDG PET. J Nucl Med. 2014;55(8):1260–6.

    Article  CAS  PubMed  Google Scholar 

  58. Sansovini M, Severi S, Ianniello A, et al. Long-term follow-up and role of FDG PET in advanced pancreatic neuroendocrine patients treated with 177Lu-D OTATATE. Eur J Nucl Med Mol Imaging. 2017;44(3):490–9.

    Article  CAS  PubMed  Google Scholar 

  59. Rindi G, Klöppel G, Couvelard A, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors. Virchows Arch. 2007;451(4):757–62.

    Article  CAS  PubMed  Google Scholar 

  60. Garin E, Le Jeune F, Devillers A, et al. Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med. 2009;50(6):858–64.

    Article  CAS  PubMed  Google Scholar 

  61. Hofman MS, Michael M, Kashyap R, et al. Modifying the poor prognosis associated with 18F-FDG-avid NET with peptide receptor chemo-radionuclide therapy (PRCRT). J Nucl Med. 2015;56(6):968–9.

    Article  PubMed  Google Scholar 

  62. Kashyap R, Hofman MS, Michael M, et al. Favourable outcomes of (177)Lu-octreotate peptide receptor chemoradionuclide therapy in patients with FDG-avid neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2015;42(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  63. Brunner P, Jorg A-C, Glatz K, et al. The prognostic and predictive value of sstr2-immunohistochemistry and sstr2-targeted imaging in neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2017;44(3):468–75.

    Article  CAS  PubMed  Google Scholar 

  64. Zandee WT, de Herder WW. The evolution of neuroendocrine tumor treatment reflected by ENETS guidelines. Neuroendocrinology. 2018;106:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brabander T, van der Zwan WA, Teunissen JJM, et al. Long-Term Efficacy, Survival, and Safety of 177Lu-DOTA0,Tyr3octreotate in Patients with Gastroenteropancreatic and Bronchial Neuroendocrine Tumors. Clin Cancer Res. 2017;23(16):4617–24.

    Article  CAS  PubMed  Google Scholar 

  66. Ezziddin S, Khalaf F, Vanezi M, et al. Outcome of peptide receptor radionuclide therapy with 177Lu-octreotate in advanced grade 1/2 pancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2014;41(5):925–33.

    Article  CAS  PubMed  Google Scholar 

  67. Kulke MH, Shah MH, Benson AB, et al. Neuroendocrine tumors, version 1.2015. J Natl Compr Cancer Netw. 2015;13(1):78–108.

    Article  CAS  Google Scholar 

  68. van Vliet EI, van Eijck CH, de Krijger RR, et al. Neoadjuvant Treatment of Nonfunctioning Pancreatic Neuroendocrine Tumors with 177Lu-DOTA0,Tyr3Octreotate. J Nucl Med. 2015;56(11):1647–53.

    Article  CAS  PubMed  Google Scholar 

  69. Kong G, Grozinsky-Glasberg S, Hofman MS, et al. Efficacy of peptide receptor radionuclide therapy for functional metastatic Paraganglioma and Pheochromocytoma. J Clin Endocrinol Metab. 2017;102(9):3278–87.

    Article  PubMed  Google Scholar 

  70. Nastos K, Cheung VTF, Toumpanakis C, et al. Peptide receptor radionuclide treatment and (131)I-MIBG in the management of patients with metastatic/progressive phaeochromocytomas and paragangliomas. J Surg Oncol. 2017;115(4):425–34.

    Article  CAS  PubMed  Google Scholar 

  71. Iten F, Muller B, Schindler C, et al. Response to 90Yttrium-DOTA-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer. Clin Cancer Res. 2007;13(22 Pt 1):6696–702.

    Article  CAS  PubMed  Google Scholar 

  72. Waldherr C, Schumacher T, Pless M, et al. Radiopeptide transmitted internal irradiation of non-iodophil thyroid cancer and conventionally untreatable medullary thyroid cancer using. Nucl Med Commun. 2001;22(6):673–8.

    Article  CAS  PubMed  Google Scholar 

  73. Gild ML, Bullock M, Robinson BG, et al. Multikinase inhibitors. Nat Rev Endocrinol. 2011;7(10):617–24.

    Article  CAS  PubMed  Google Scholar 

  74. Versari A, Sollini M, Frasoldati A, et al. Differentiated thyroid cancer. Thyroid. 2014;24(4):715–26.

    Article  CAS  PubMed  Google Scholar 

  75. Arnold R, Wittenberg M, Rinke A, et al. Placebo controlled, double blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID): results on long-term survival. JCO. 2013;31(15 suppl):4030.

    Article  Google Scholar 

  76. Caplin ME, Pavel M, Cwikla JB, et al. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours. Endocr Relat Cancer. 2016;23(3):191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rinke A, Wittenberg M, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID): results of long-term survival. Neuroendocrinology. 2017;104(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  78. Aalbersberg EA, de wit-van der Veen BJ, Versleijen MWJ, et al. Influence of lanreotide on uptake of 68Ga-DOTATATE in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2018;46(3):696–703.

    Google Scholar 

  79. Bodei L, Cremonesi M, Zoboli S, et al. Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study. Eur J Nucl Med Mol Imaging. 2003;30(2):207–16.

    Article  CAS  PubMed  Google Scholar 

  80. Rolleman EJ, Valkema R, de Jong M, et al. Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging. 2003;30(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  81. Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue 90Y-DOTA-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29(17):2416–23.

    Article  CAS  PubMed  Google Scholar 

  82. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rinke A, Wittenberg M, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID). Neuroendocrinology. 2017;104(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  84. Pavel ME, Hainsworth JD, Baudin E, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2). Lancet. 2011;378(9808):2005–12.

    Article  CAS  PubMed  Google Scholar 

  85. Pavel ME, Baudin E, Oberg KE, et al. Efficacy of everolimus plus octreotide LAR in patients with advanced neuroendocrine tumor and carcinoid syndrome. Ann Oncol. 2017;28(7):1569–75.

    Article  CAS  PubMed  Google Scholar 

  86. Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yao JC, Pavel M, Lombard-Bohas C, et al. Everolimus for the treatment of advanced pancreatic neuroendocrine tumors. J Clin Oncol. 2016;34(32):3906–13.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yao JC, Fazio N, Singh S, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4). Lancet. 2016;387(10022):968–77.

    Article  CAS  PubMed  Google Scholar 

  89. Raymond E, Dahan L, Raoul J-L, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):501–13.

    Article  CAS  PubMed  Google Scholar 

  90. Dahan L, Bonnetain F, Rougier P, et al. Phase III trial of chemotherapy using 5-fluorouracil and streptozotocin compared with interferon alpha for advanced carcinoid tumors. Endocr Relat Cancer. 2009;16(4):1351–61.

    Article  CAS  PubMed  Google Scholar 

  91. Hallet J, Law CHL, Cukier M, et al. Exploring the rising incidence of neuroendocrine tumors. Cancer. 2015;121(4):589–97.

    Article  PubMed  Google Scholar 

  92. Mariniello A, Bodei L, Tinelli C, et al. Long-term results of PRRT in advanced bronchopulmonary carcinoid. Eur J Nucl Med Mol Imaging. 2016;43(3):441–52.

    Article  CAS  PubMed  Google Scholar 

  93. Sabet A, Haug AR, Eiden C, et al. Efficacy of peptide receptor radionuclide therapy with 177Lu-octreotate in metastatic pulmonary neuroendocrine tumors. Am J Nucl Med Mol Imaging. 2017;7(2):74–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sabet A, Dautzenberg K, Haslerud T, et al. Specific efficacy of peptide receptor radionuclide therapy with (177)Lu-octreotate in advanced neuroendocrine tumours of the small intestine. Eur J Nucl Med Mol Imaging. 2015;42(8):1238–46.

    Article  CAS  PubMed  Google Scholar 

  95. Hörsch D, Ezziddin S, Haug A, et al. Effectiveness and side-effects of peptide receptor radionuclide therapy for neuroendocrine neoplasms in Germany. Eur J Cancer. 2016;58:41–51.

    Article  CAS  PubMed  Google Scholar 

  96. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog 177 Lu-DOTA 0,Tyr3octreotate. J Clin Oncol. 2008;26(13):2124–30.

    Article  CAS  PubMed  Google Scholar 

  97. Baum RP, Kluge AW, Kulkarni H, et al. (177)Lu-DOTA(0)-D-Phe(1)-Tyr(3)-octreotide ((177)Lu-DOTATOC) for peptide receptor radiotherapy in patients with advanced neuroendocrine Tumours. Theranostics. 2016;6(4):501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Waldherr C, Pless M, Maecke HR, et al. The clinical value of 90Y-DOTA-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours. Ann Oncol. 2001;12(7):941–5.

    Article  CAS  PubMed  Google Scholar 

  99. Bushnell DL, O'Dorisio TM, O'Dorisio MS, et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol. 2010;28(10):1652–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cwikla JB, Sankowski A, Seklecka N, et al. Efficacy of radionuclide treatment DOTATATE Y-90 in patients with progressive metastatic gastroenteropancreatic neuroendocrine carcinomas (GEP-NETs): a phase II study. Ann Oncol. 2010;21(4):787–94.

    Article  CAS  PubMed  Google Scholar 

  101. Villard L, Romer A, Marincek N, et al. Cohort study of somatostatin-based Radiopeptide therapy with [90Y-DOTA]-TOC versus [90Y-DOTA]-TOC plus [177Lu-DOTA]-TOC in neuroendocrine cancers. J Clin Oncol. 2012;30(10):1100–6.

    Article  CAS  PubMed  Google Scholar 

  102. Seregni E, Maccauro M, Chiesa C, et al. Treatment with tandem 90YDOTA-TATE and 177LuDOTA-TATE of neuroendocrine tumours refractory to conventional therapy. Eur J Nucl Med Mol Imaging. 2014;41(2):223–30.

    Article  CAS  PubMed  Google Scholar 

  103. de Jong M, Breeman WAP, Valkema R, et al. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46(Suppl 1):13S–7S.

    PubMed  Google Scholar 

  104. Kunikowska J, Krolicki L, Hubalewska-Dydejczyk A, et al. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE. Eur J Nucl Med Mol Imaging. 2011;38(10):1788–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kunikowska J, Pawlak D, Bak MI, et al. Long-term results and tolerability of tandem peptide receptor radionuclide therapy with (90)Y/(177)Lu-DOTATATE in neuroendocrine tumors with respect to the primary location. Ann Nucl Med. 2017;31(5):347–56.

    Article  CAS  PubMed  Google Scholar 

  106. Pfeifer AK, Gregersen T, Gronbaek H, et al. Peptide receptor radionuclide therapy with Y-DOTATOC and (177)Lu-DOTATOC in advanced neuroendocrine tumors. Neuroendocrinology. 2011;93(3):189–96.

    Article  CAS  PubMed  Google Scholar 

  107. Bodei L, Cremonesi M, Grana CM, et al. Peptide receptor radionuclide therapy with (1)(7)(7)Lu-DOTATATE. Eur J Nucl Med Mol Imaging. 2011;38(12):2125–35.

    Article  CAS  PubMed  Google Scholar 

  108. Yordanova A, Wicharz MM, Mayer K, et al. The role of adding somatostatin analogues to peptide receptor radionuclide therapy as a combination and maintenance therapy. Clin Cancer Res. 2018;24(19):4672–9.

    Article  CAS  PubMed  Google Scholar 

  109. Bison SM, Konijnenberg MW, Melis M, et al. Peptide receptor radionuclide therapy using radiolabeled somatostatin analogs. Clin Transl Imaging. 2014;2:55–66.

    Article  PubMed  PubMed Central  Google Scholar 

  110. van Essen M, Krenning EP, Kam BL, et al. Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35(4):743–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Claringbold PG, Brayshaw PA, Price RA, et al. Phase II study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2011;38(2):302–11.

    Article  CAS  PubMed  Google Scholar 

  112. Claringbold PG, Price RA, Turner JH. Phase I-II study of radiopeptide 177Lu-octreotate in combination with capecitabine and temozolomide in advanced low-grade neuroendocrine tumors. Cancer Biother Radiopharm. 2012;27(9):561–9.

    Article  CAS  PubMed  Google Scholar 

  113. Claringbold PG, Turner JH. Pancreatic neuroendocrine tumor control. Neuroendocrinology. 2016;103(5):432–9.

    Article  CAS  PubMed  Google Scholar 

  114. Kong G, Thompson M, Collins M, et al. Assessment of predictors of response and long-term survival of patients with neuroendocrine tumour treated with peptide receptor chemoradionuclide therapy (PRCRT). Eur J Nucl Med Mol Imaging. 2014;41(10):1831–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Claringbold PG, Turner JH. NeuroEndocrine tumor therapy with Lutetium-177-octreotate and Everolimus (NETTLE). Cancer Biother Radiopharm. 2015;30(6):261–9.

    Article  CAS  PubMed  Google Scholar 

  116. Zellmer J, Vomacka L, Boening G, et al. Combination of peptide receptor radionuclide therapy with Lu-177 DOTATATE and the m-TOR inhibitor RAD001 (Everolimus) in AR42J tumor bearing mice and response assessment by Ga-68 DOTATATE PET. J Nucl Med. 2018;59(suppl 1):1346b.

    Google Scholar 

  117. van Essen M, Krenning EP, Kam BLR, et al. Salvage therapy with (177)Lu-octreotate in patients with bronchial and gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2010;51(3):383–90.

    Article  CAS  PubMed  Google Scholar 

  118. Severi S, Sansovini M, Ianniello A, et al. Feasibility and utility of re-treatment with (177)Lu-DOTATATE in GEP-NENs relapsed after treatment with (90)Y-DOTATOC. Eur J Nucl Med Mol Imaging. 2015;42(13):1955–63.

    Article  CAS  PubMed  Google Scholar 

  119. Program N C I C T E. Common terminology criteria for adverse events:(CTCAE). Cancer Therapy Evaluation Program; 2003.

    Google Scholar 

  120. de Keizer B, van Aken MO, Feelders RA, et al. Hormonal crises following receptor radionuclide therapy with the radiolabeled somatostatin analogue [(177)Lu-DOTA(0),Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging. 2007;35(4):749–55.

    Article  CAS  Google Scholar 

  121. Bergsma H, Konijnenberg MW, Kam BLR, et al. Subacute haematotoxicity after PRRT with (177)Lu-DOTA-octreotate: prognostic factors, incidence and course. Eur J Nucl Med Mol Imaging. 2016;43(3):453–63.

    Article  CAS  PubMed  Google Scholar 

  122. Bergsma H, Konijnenberg MW, van der Zwan WA, et al. Nephrotoxicity after PRRT with (177)Lu-DOTA-octreotate. Eur J Nucl Med Mol Imaging. 2016;43(10):1802–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Teunissen JJM, Krenning EP, de Jong FH, et al. Effects of therapy with 177Lu-DOTA 0,Tyr 3octreotate on endocrine function. Eur J Nucl Med Mol Imaging. 2009;36(11):1758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Stabin MG. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 1996;37(3):538–46.

    CAS  PubMed  Google Scholar 

  125. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023–7.

    PubMed  Google Scholar 

  126. Kupitz D, Wetz C, Wissel H, et al. Software-assisted dosimetry in peptide receptor radionuclide therapy with 177Lutetium-DOTATATE for various imaging scenarios. PLoS One. 2017;12(11):e0187570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schuchardt C, Kulkarni HR, Prasad V, et al. The Bad Berka dose protocol: comparative results of dosimetry in peptide receptor radionuclide therapy using (177)Lu-DOTATATE, (177)Lu-DOTANOC, and (177)Lu-DOTATOC. Recent Results Cancer Res. 2013;194:519–36.

    Article  CAS  PubMed  Google Scholar 

  128. Misadministration of radioactive material in medicine. Bethesda, MD: NCRP; 1991.

    Google Scholar 

  129. Gupta SK, Singla S, Thakral P, et al. Dosimetric analyses of kidneys, liver, spleen, pituitary gland, and neuroendocrine tumors of patients treated with 177Lu-DOTATATE. Clin Nucl Med. 2013;38(3):188–94.

    Article  PubMed  Google Scholar 

  130. Pauwels S, Barone R, Walrand S, et al. Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med. 2005;46(Suppl 1):92S–8S.

    CAS  PubMed  Google Scholar 

  131. Guerriero F, Ferrari ME, Botta F, et al. Kidney dosimetry in (1)(7)(7)Lu and (9)(0)Y peptide receptor radionuclide therapy. Biomed Res Int. 2013;2013:935351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Forrer F, Krenning EP, Kooij PP, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with 177Lu-DOTA(0),Tyr(3)octreotate. Eur J Nucl Med Mol Imaging. 2009;36(7):1138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sandstrom M, Garske-Roman U, Granberg D, et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J Nucl Med. 2013;54(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  134. Wehrmann C, Senftleben S, Zachert C, et al. Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Radiopharm. 2007;22(3):406–16.

    Article  CAS  PubMed  Google Scholar 

  135. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  136. Milano MT, Constine LS, Okunieff P. Normal tissue tolerance dose metrics for radiation therapy of major organs. Semin Radiat Oncol. 2007;17(2):131–40.

    Article  PubMed  Google Scholar 

  137. Johnson JR, Temple R. Food and Drug Administration requirements for approval of new anticancer drugs. Cancer Treat Rep. 1985;69(10):1155–9.

    CAS  PubMed  Google Scholar 

  138. Khan S, Krenning EP, van Essen M, et al. Quality of life in 265 patients with gastroenteropancreatic or bronchial neuroendocrine tumors treated with 177Lu-DOTA0,Tyr3octreotate. J Nucl Med. 2011;52(9):1361–8.

    Article  CAS  PubMed  Google Scholar 

  139. Marinova M, Mücke M, Mahlberg L, et al. Improving quality of life in patients with pancreatic neuroendocrine tumor following peptide receptor radionuclide therapy assessed by EORTC QLQ-C30. Eur J Nucl Med Mol Imaging. 2018;45(1):38–46.

    Article  CAS  PubMed  Google Scholar 

  140. Severi S, Grassi I, Nicolini S, et al. Peptide receptor radionuclide therapy in the management of gastrointestinal neuroendocrine tumors. Onco Targets Ther. 2017;10:551–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Teunissen JJM, Kwekkeboom DJ, Krenning EP. Quality of life in patients with gastroenteropancreatic tumors treated with 177Lu-DOTA0,Tyr3octreotate. J Clin Oncol. 2004;22(13):2724–9.

    Article  CAS  PubMed  Google Scholar 

  142. Traub-Weidinger T, Raderer M, Uffmann M, et al. Improved quality of life in patients treated with peptide radionuclides. World J Nucl Med. 2011;10(2):115–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. O'Toole D, Grossman A, Gross D, et al. ENETS consensus guidelines for the standards of Care in Neuroendocrine Tumors: biochemical markers. Neuroendocrinology. 2009;90(2):194–202.

    Article  CAS  PubMed  Google Scholar 

  144. Ruf J, Heuck F, Schiefer J, et al. Impact of multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology. 2010;91(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  145. Kayani I, Bomanji JB, Groves A, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer. 2008;112(11):2447–55.

    Article  PubMed  Google Scholar 

  146. Pape U-F, Perren A, Niederle B, et al. ENETS consensus guidelines for the management of patients with neuroendocrine neoplasms from the jejuno-ileum and the appendix including goblet cell carcinomas. Neuroendocrinology. 2011;95(2):135–56.

    Article  CAS  Google Scholar 

  147. Pavel M, Baudin E, Couvelard A, et al. ENETS consensus guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157–76.

    Article  CAS  PubMed  Google Scholar 

  148. Ginj M, Zhang H, Waser B, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A. 2006;103(44):16436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cescato R, Waser B, Fani M, et al. Evaluation of 177Lu-DOTA-sst2 antagonist versus 177Lu-DOTA-sst2 agonist binding in human cancers in vitro. J Nucl Med. 2011;52(12):1886–90.

    Article  CAS  PubMed  Google Scholar 

  150. Nicolas GP, Mansi R, McDougall L, et al. Biodistribution, pharmacokinetics, and dosimetry of177Lu-,90Y-, and111In-labeled somatostatin receptor antagonist OPS201 in comparison to the Agonist177Lu-DOTATATE. J Nucl Med. 2017;58(9):1435–41.

    Article  CAS  PubMed  Google Scholar 

  151. Wild D, Fani M, Behe M, et al. First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med. 2011;52(9):1412–7.

    Article  CAS  PubMed  Google Scholar 

  152. Nicolas GP, Beykan S, Bouterfa H, et al. Safety, biodistribution, and radiation dosimetry of68Ga-OPS202 (68Ga-NODAGA-JR11) in patients with Gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2018;59(6):909–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Yordanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yordanova, A. (2020). Peptide Receptor Radionuclide Therapy. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics