Skip to main content

Mid to Late Holocene Reconstruction of the Southwest Monsoonal Shifts Based on a Marine Sediment Core, off the Landfall Island, Bay of Bengal

  • Chapter
  • First Online:
The Andaman Islands and Adjoining Offshore: Geology, Tectonics and Palaeoclimate

Part of the book series: Society of Earth Scientists Series ((SESS))

Abstract

Undisturbed marine sediment cores raised from the oceans hold continuous records of sedimentation and palaeoenvironmental changes, hence it is suitable material for reconstructing past climate fluctuations. In the present study a marine sediment core about 124 cm raised from a depth of 250 m, near the Landfall Island, North Andaman, Bay of Bengal (BOB) was used to reconstruct the south west monsoonal shifts over the Indian sub-continent and BOB during the mid to late Holocene by using various proxies such as clay mineralogy, oxygen (δ18O) and carbon (δ13C) stable isotopes, and nanoplankton. Five organic carbon sediment samples were radiocarbon dated. The calibrated radiocarbon date ranges in age from (6078 to 1658 years BP) that is from the mid to late Holocene period. The texture analysis indicates that the sediments are predominantly clayey silt in nature. Smectite, illite, kaolinite and chlorite were the clay minerals present in the sediment core in which smectite and illite are dominant. The high smectite content reflects the weathering product of mafic rock contributed from the nearby island whereas illite is predominantly coming from the rivers such as Irrawaddy, Salween and Sittang rivers from Myanmar. Occurrence of nanoplankton such as Gephyrocapsa oceanica, Emiliania huxleyi, and Ascidian spicules in the calcareous nanoplankton assemblage suggest a mixed source also from the sedimentary rocks of the Mio-Pliocene age. The sediment core reveals layers of coarser sand flux since ~6500–6000 years BP and ~3300 years BP that reflects a strengthened South West Monsoon (SWM) in an overall weakening of the SWM from the middle Holocene (6000 yrs BP) to the late Holocene period (2000 years BP). This is also inferred from the high smectite, high C/I ratio and low K/C ratio. Within this period, an intense weakening of the SWM is noticed at ~4400–4200 years BP (Sub—Boreal Optimum), which is also supported by the δ18O data of G. ruber becoming more positive from −3.39 to −2.33‰. A major wet phase was found reaching its maximum around 3400–3200 years BP and amelioration in climate ~2000 years BP with a warm dry phase ~2200–1800 years BP (Roman Warm Period) followed by the Medieval Warm Period (1000–800 years BP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achyuthan H, Farooqui A, Gopal VEE, Phartiyal B, Lone AM (2017) Late Quaternary to Holocene southwest monsoon reconstruction: a review based on lake and wetland systems (studies carried out during 2011–2016). Proc Indian Nat Sci Acad 82(3):847–868

    Google Scholar 

  • Ahmad T, Dragusanu V, Tanaka T (2008) Provenance of Proterozoic Basal Aravalli mafic volcanic rocks from Rajasthan, Northwestern India: Nd isotopes evidence for enriched mantle reservoirs. Precamb Resour 162:150–159

    Article  Google Scholar 

  • Ahmad SM, Zheng H, Raza W, Zhou B, Lone MA, Raza T, Suseela G (2012) Glacial to Holocene changes in the surface and deep waters of the northeast Indian Ocean. Mar Geol 329(331):16–23

    Article  Google Scholar 

  • Bar-Matthews M, Ayalon A, Kaufman A, Wasserburg GJ (1999) The eastern Mediterranean palaeoclimate as a reflection of regional events: Soreq Cave, Israel. Earth Planet Sci Lett 166:85–95

    Article  Google Scholar 

  • Bhushan R, Singh SK, Burr GS, Jull AJT (2007) Palaeoclimatic studies from sediments in the Bay of Bengal. In: Proceedings 12th ISMAS symposium cum workshop on mass spectrometry, IRP-3

    Google Scholar 

  • Bianchi GG, McCave IN (1999) Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature 397(6719):515–517

    Article  Google Scholar 

  • Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans. Bull Geol Soc Am 76:803–832

    Article  Google Scholar 

  • Breitenbach SFM, Adkins JF, Meyer H, Marwan N, Kumar KK, Haug GH (2010) Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet Sci Lett 292:212–220

    Article  Google Scholar 

  • Bukry D (1971) Calcareouss nanofossils’ Coccolith Stratigraphy leg 13, Deep sea drilling project, initial report. U. S. Geol Surv, La Jolla, California, pp 817–822

    Google Scholar 

  • Carver RE (1971) Procedures in sediment petrol. Wiley and Sons. Inc., New York, p 653

    Google Scholar 

  • Chauhan OS (2003) Past 20,000 years history of Himalayan aridity: evidence from the oxygen isotope record of Bay of Bengal. Curr Sci 84:90–93

    Google Scholar 

  • Chauhan OS, Suneethi J (2001) 18 ka BP records of climatic changes, Bay of Bengal: isotopic and sedimentological evidences. Curr Sci 81:1231–1234

    Google Scholar 

  • Chauhan OS, Vogelsang E (2006) Climate induced changes in the circulation and dispersal patterns of the fluvial sources during late quaternary in the middle Bengal Fan. J Earth Syst Sci 115(3):379–386

    Article  Google Scholar 

  • Chauhan OS, Borole DV, Gujar AR, Antonio M, Mislanker PG, Rao ChM (1993) Evidences of climatic variations during Late Pleistocene-Holocene in the eastern Bay of Bengal. Curr Sci 65(7):558–562

    Google Scholar 

  • Chauhan OS, Jayakumar S, Menezes AAS, Rajawat AS, Nayak, SR (2006) Anomalous inland influx of the River Indus, Gulf of Kachchh, India. Mar Geol 229:91–100. https://doi.org/10.1016/j.margeo.2005.12.003

  • Chauhan OS, Patil SK, Suneethi J (2004) Fluvial influx and weathering history of the Himalayas since Last Glacial Maxima; isotopic, sedimentological and magnetic records from the Bay of Bengal. Curr Sci 87(4):509–515

    Google Scholar 

  • Chauhan OS, Sukhija BS, Gujar AR, Nagabhushanam N, Paropkari AL (2000) Late quaternary variations in clay mineral along the SW continental margin of India: evidence of climatic variations. Geo Mar Lett 20:118–122. https://doi.org/10.1007/s003670000043

  • Colin C, Turpin L, Bertauz J, Despraries A, Kissel C (1999) Erosional history of the Himalayas and Burman ranges during the last two glacial-interglacial cycles. Earth Planet Sci Lett 171:647–660

    Article  Google Scholar 

  • Colin C, Turpin L, Blamart D, Frank N, Kissel C, Duchamp S (2006) Evolution of weathering patterns in the Indo-Burman ranges over the last 280 kyr: effects of sediment provenance on 87Sr/86Sr ratios tracer. Geochem Geophys Geosys 7(3):Q03007. https://doi.org/10.1029/2005GC000962

    Article  Google Scholar 

  • Contreras-Rosales A, Jennerjahn T, Tharammal T, Lückge A, Paul A, Schefuß E (2014) Evolution of the Indian Summer Monsoon and terrestrial vegetation in the Bengal region during the past 18 ka. Quat Sci Rev 102:133–148

    Article  Google Scholar 

  • Dash SK, Kumar JR, Shekhar MS (2004) On the decreasing frequency of monsoon depressions over the Indian region. Curr Sci 86:1404–1411

    Google Scholar 

  • Desprat S, Sánchez-Goñi MF, Loutre MF (2003) Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data. Earth and Planet Sci Lett 213:63–78

    Article  Google Scholar 

  • Ding YH (1994) Monsoons over China. Kluwer Academic Publishers, pp 432

    Google Scholar 

  • Duplessy JG (1982) Glacial to interglacial contrast in the northern Indian Ocean. Nature 295:494–498

    Article  Google Scholar 

  • Eksambekar SP (2002) Contribution of the study of phytoliths to Bioarchaeology. Unpublished Ph.D. thesis, Deccan College PGRI (Deemed University), Pune, India

    Google Scholar 

  • Enzel Y, Ely LL, Mishra S, Ramesh R, Amit R, Lazar B, Rajaguru SN, Baker VR, Sandler A (1999) High-resolution Holocene environmental changes in the Thar Desert. Northwestern India. Science 284(5411):125–128

    Google Scholar 

  • Fleitmann D (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188

    Article  Google Scholar 

  • Fleitmann D, Matter A (2009) The Speleothem record of climate variability in Southern Arabia. Comptes Rendus Geosci 341:633–642

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Mudelsee M, Neff N, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science 300:1737–1739

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Neff U, Mudelsee M, Mangini A, Matter A (2004) Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quat Sci Rev 23:935–945

    Article  Google Scholar 

  • Giosan L, Orsi W, Collen MJL, Wuchter C, Dunlea AG, Thirumalai K, Munoz SE, Clift P, Fuller DQ (2018) Neoglacial climate Anomalies and the Harappan Metamorphosis. Climate Past, Under Rev. https://doi.org/10.5194/cp-2018-37

  • Gorsky G, Chertiennot-Dinet MJ, Blanchot J, Palazzoli I (1999) Picoplankton and nanoplankton aggregate on by appendicularian fecal pellet contents of Megalocercus huxleyi in the equatorial Pacific. J Geophys Oceans 104:3381–3390

    Article  Google Scholar 

  • Griffin RE (1968) Clay mineralogy. McGraw Hill, New York, p 565

    Google Scholar 

  • Griffin WL, Zhang AD, O’Reilly SY, Ryan CG (1998) Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. Mantle Dyn Plate Interact East Asia 27:107–126. In: Flower MFJ, Chung SL, Lo CH, Lee TY (eds) Amer Geophys Union, Geodynam Ser

    Google Scholar 

  • Gupta AK, Thamban M (2008) Holocene Indian monsoon variability. Glimpses Geosci Res India, pp 28–31

    Google Scholar 

  • Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421:354–357

    Article  Google Scholar 

  • Hughes MK, Diaz HF (1994) Was there a ‘Medieval Warm Period. and if so, where and when. Clim Change 26:109–142

    Article  Google Scholar 

  • Jochem F (1989) Distribution and importance of autotrophic ultra-plankton in a boreal inshore area (Kiel Bight, Western Baltic). Marine Ecol Progr Ser 53:153–169

    Article  Google Scholar 

  • Kessarkar PM, Rao VP, Ahmad SM, Patil SK, Anil Kumar A, Anil Babu G, Chakraborty S, Soundar Rajan R (2005) Changing sedimentary environment during the Late Quaternary: sedimentological and isotopic evidence from the distal Bengal Fan. Deep Sea Res Part I 52:1591–1615

    Article  Google Scholar 

  • Kotlia BS, Ahmed SM, Zhao J, Raza W, Collerson KD, Joshi LM, Sanwal J (2012) Climatic fluctuations during the LIA and post-LIA in the Kumaun Lesser Himalaya, India: evidence from a 400 y old stalagmite record. Quat Intl 263:129–138

    Article  Google Scholar 

  • Krumbein WC, Pettijohn FJ (1938) Manual of sedimentary petrography. Appleton-Century-Crofts, Inc, New York

    Google Scholar 

  • Kudrass HR, Hofman A, Doose H, Emeis K, Erlenkeuser H (2001) Modulation and amplification of climatic changes in the Northern Hemisphere by the Indian summer monsoon during the past 80 ky. Geology 29:63–66

    Article  Google Scholar 

  • Kuppusamy M, Ghosh P (2012) Cenozoic climatic record for monsoonal rainfall over the Indian region. Mod Climat. In: Wang SY (ed). In Tech. ISBN 978-953-51-0095-9. https://doi.org/10.5772/36206

  • Kurian S, Nath BN, Ramaswamy V, Naman D, Rao TG, Kamesh Raju KA, Selvaraj K, Chen CTA (2008) Possible detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman backarc basin. Mar Geol 247:178–193

    Article  Google Scholar 

  • Laskar AH, Raghav S, Yadava MG, Jani RA, Narayana AC, Ramesh R (2011) Potential of stable carbon and oxygen isotope variations of speleothems from Andaman Islands, India, for paleomonsoon reconstruction. J Geolog Res 2011. https://doi.org/10.1155/2011/272971

  • Laskar AH, Yadava MG, Sharma N, Ramesh R (2013a) Late Holocene climate in the Lower Narmada valley, Gujarat, Western India, inferred using sedimentary carbon and oxygen isotope ratios. Holocene 23(8):1115–1122

    Article  Google Scholar 

  • Laskar AH, Yadava MG, Ramesh R, Polyak VJ, Asmerom Y (2013b) A 4 kyr stalagmite oxygen isotopic record of the past Indian Summer Monsoon in the Andaman Islands. Geochem Geophys Geosys 14(9):3555–3566

    Article  Google Scholar 

  • Liu ZT, Colin C, Trentesaux A, Blamart D, Bassinot F, Siani G, Sicre MA (2004) Erosional history of the eastern Tibetan Plateau over the past 190 kyr: clay mineralogical and geochemical investigations from the southwestern South China Sea. Mar Geol 209:1–18

    Article  Google Scholar 

  • Liu ZT, Colin C, Trentesaux A, Siani G, Frank N, Blamart D, Farid S (2005) Late quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin. Quat Resou 63(3):316–328

    Article  Google Scholar 

  • Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Regional seas, reference methods for marine pollution studies, United Nations Environment Programme. Earth-Sci Rev 32(63):235–283

    Google Scholar 

  • Lückge A, Doose‐Rolinski H, Khan AA, Schulz H, von Rad U (2001) Monsoonal variability in the northeastern Arabian Sea during the past 5000 years: geochemical evidence from laminated sediments. Palaeogeogr Palaeoclimatol Palaeoecol 167:273–286

    Article  Google Scholar 

  • Mann ME (2002a) Medieval climatic optimum, in Encyclopedia of global environmental change. In: MacCracken MC, Perry JS (eds) Wiley, Chichester, U.K, pp 514–516

    Google Scholar 

  • Mann ME (2002b) Little ice age. In: MacCracken MC, Perry JS (eds) Wiley, Chichester, U.K, pp 504–509

    Google Scholar 

  • Martinez-Cortizas A, Pontedevedra-Pombal X, Garcia-Rodeja E, Novoa-Munoz JC, Shotyk W (1999) Mercury in a Spanish peat bog archive of climate change and atmospheric metal deposition. Science 284:939–942

    Article  Google Scholar 

  • Masud Alam AKM, Xie S, Wallis LA (2009) Reconstructing late Holocene palaeoenvironments in Bangladesh: phytolith analysis of archaeological soils from Somapura Mahavihara site in the Paharpur area, Badalgacchi Upazila, Naogaon District, Bangladesh. J Archaeol Sci 36:504–512

    Article  Google Scholar 

  • Mathien E, Bassinot F (2008) Abrupt hydrographic changes in the Bay of Bengal during the Holocene. Geophys Res Abst, EGU2008-A-09423

    Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 9:1–19

    Article  Google Scholar 

  • Moore GF, Curray JR, Emmel FJ (1982) Sedimentation in the Sunda trench and forearc region. Geol Soc London, Spl Publ 10:245–258. In: Legget JK (ed) Trench-forearc geology: sedimentation and tectonics on modern and ancient active plate margins

    Google Scholar 

  • Morrill C, Overpeck JT, Cole JE (2003) A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. Holocene 13:465–476

    Article  Google Scholar 

  • Naidu PD, Patil JS, Narale DD, Anil AC (2012) A first look at the dinoflagellate cysts abundance in the Bay of Bengal: implications on Late Quaternary productivity and climate change. Curr Sci 102(3):495–499

    Google Scholar 

  • Nath BN, Gupta SM, Mislankar P.G, Rao BR, Parthiban G, Roelands I, Patil SK (2005) Evidence of Himalayan erosional event at approx. 0.5 Ma from a sediment core from the equatorial Indian ocean in the vicinity of ODP Leg 116 sites. Deep Sea Res 52(2):2061–2077

    Google Scholar 

  • Nigam R, Hashimi NH (1995) Marine sediments and palaeoclimatic variations since the Late Pleistocene: an overview of Arabian sea. Mem Geol Soc India 32:380–390

    Google Scholar 

  • Pal T, Chakraborty PP, Duttagupta T, Singh DC (2003) Geodynamic evolution of the outer-arc-forearc belt in the Andaman Islands, the central part of the Burma-Java subduction complex. Geol Mag 140(3):289–307

    Article  Google Scholar 

  • Pandey DN, Gupta AK, Anderson DM (2003) Rainwater harvesting as an adaptation to climate change. Curr Sci 85:46–59

    Google Scholar 

  • Patnaik R, Gupta AK, Naidu PD, Yadav RR, Bhattacharyya A, Kumar M (2012) Indian Monsoon variability at different time scales: marine and terrestrial proxy records. Procs Indian Nat Sci Acad 78(3):535–547

    Google Scholar 

  • Patterson WP, Dietrich KA, Holmden C, Andrews JT (2010) Two millennia of North Atlantic seasonality and implications for Norse colonies. Procs Nat Acad Sci USA 107(12):5306–5310

    Article  Google Scholar 

  • Phadtare NR (2000) Sharp decrease in summer monsoon strength 4000-3500 cal yr BP in the central Higher Himalaya of India based on pollen evidence from alpine peat. Quat Res 53:122–129

    Article  Google Scholar 

  • Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic Press, New York, p 280

    Google Scholar 

  • Ponton C, Giosan L, Eglinton TI, Fuller DQ, Johnson JE, Kumar P, Collett TS (2012) Holocene aridification of India. Geophys Res Lett 39:L03704. https://doi.org/10.1029/2011GL050722

    Article  Google Scholar 

  • Ramesh S, Ramasamy S (1997) Rare earth element geochemistry of a sediment core from lower Bengal Fan. J Geol Soc India 50:339–406

    Google Scholar 

  • Rao VP (1983) Clay minerals in the sediments around the Andaman Islands. Indian J Mar Sci 12:17–20

    Google Scholar 

  • Rao VP, Rao BR (1995) Provenance and distribution of clay minerals in the continental shelf and slope sediments of the west coast of India. Continental Shelf Res 15:1757–1771

    Google Scholar 

  • Rashid H, England E, Thompson L, Polyak L (2011) Late Glacial to Holocene Indian Summer Monsoon variability based upon sediment records taken from the Bay of Bengal. Terrestrial Atmospheric Ocean Sci 22(2):215–228

    Article  Google Scholar 

  • Rashid H, Flower BP, Poore RZ, Quinn TM (2007) A ∼25 ka Indian Ocean monsoon variability record from the Andaman Sea. Quat Sci Rev 26:2586–2597

    Google Scholar 

  • Ray D, Rajan S, Ravindra R, Jana A (2011) Microtextural and mineral chemical analyses of andesite-dacite from Barren and Narcondam islands: evidences for magma mixing and petrological implications. J Earth Syst Sci 120(1):145–155

    Article  Google Scholar 

  • Sarin MM, Borole DV, Krishnaswami S (1979) Geochemistry and geochronology of sediments from the Bay of Bengal and the equatorial Indian Ocean. Procs Indian Acad Sci 88:131–154

    Article  Google Scholar 

  • Sarkar S, Prasad S, Wilkes H, Niedel R, Stibich M, Basavaiah N, Sachse D (2015) Monsoon source shifts during the drying mid-Holocene: Biomarker isotope based evidence from the core ‘monsoon zone’ (CMZ) of India. Quaternary Sci Rev 123:144–157

    Google Scholar 

  • Sarkar A, Ramesh R, Bhattacharya SK, Rajagopalan G (1990) Oxygen isotope evidence for a stronger winter monsoon current during the last glaciations. Nature 343:549–551

    Article  Google Scholar 

  • Sarkar A, Ramesh R, Somayajulu BLK, Agnihotri R, Jull AJT, Burr GS (2000) High resolution Holocene palaeomonsoon record from Eastern Arabian Sea. Earth Plan Sci Lett 177:209–218

    Article  Google Scholar 

  • Saxena A, Prasad V, Singh IB (2013) Holocene palaeoclimate reconstruction from the phytoliths of the lake-fill sequence of Ganga Plain. Curr Sci 104(8):1054–1062

    Google Scholar 

  • Severdrup HU, Johnson MW, Fleming RH (1942) The oceans their physics, chemistry and general biology. Prentice Hall, New York, p 1087

    Google Scholar 

  • Sharma S, Joachimski MM, Tobschall HJ, Singh IB, Sharma C, Chauhan MS (2006) Correlative evidence of monsoon variability, vegetation change and human habitation in Senai lake deposit, Ganga plain. Curr Sci 90:973–978

    Google Scholar 

  • Sharma C, Chauhan MS, Gupta A, Rajagopalan G (1995) In: Symposium volume, “recent advances in geological studies of Northwest Himalaya and Foredeep”. Geological Survey of India, Lucknow, pp 90

    Google Scholar 

  • Sharma MC, Owen LA (1996) Quaternary glacial history of the NW Garhwal, central Himalayas, India. Quat Sci Rev 15:335–365

    Article  Google Scholar 

  • Shepard F (1954) Nomenclature based on sand-silt-clay ratios. J Sed Petrol 24:151–158

    Article  Google Scholar 

  • Shetye SR, Shenoi SSC, Gouveia AD, Michael GS, Sundar D, Nampoothri G (1991) Wind driven coastal upwelling along the western boundary of the Bay of Bengal during southwest monsoon. Continental Shelf Res 11:1397–1408

    Article  Google Scholar 

  • Shetye SR, Gouveia A, Shenoi SSC, Sundar D, Michael GS, Nampoothri G (1993) The western boundary current in the seasonal subtropical gyre in the Bay of Bengal. J Geophys Res 98:945–954

    Article  Google Scholar 

  • Siby K, Nath BN, Ramaswamy V, Naman D, Gnaneshwar Rao T, Kamesh Raju KA, Selvaraj K, Chen CTA (2008) Possible detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman backarc basin. Mar Geol 247(3–4):178–193

    Google Scholar 

  • Singh G, Wasson RJ, Agrawal DP (1990) Vegetational and seasonal climate changes since last full glacial in the Thar Desert. Rev Palaeobot Palynol 64:351–358

    Article  Google Scholar 

  • Sinha A, Cannariato KG, Stott LD, Cheng H, Edwards RL, Yadava MG, Ramesh R, Singh IB (2007) A 900-year (600 to 1500 AD) record of the Indian summer monsoon precipitation from the core monsoon zone of India. Geophys Res Lett 34:L16707. https://doi.org/10.1029/2007GL030431

    Article  Google Scholar 

  • Sirocko F, Sarnthein M, Erlenkeuser H, Lange H, Arnold M, Duplessy JC (1993) Century scale events in monsoon climate over the past 24,000 years. Nature 364:322–324

    Article  Google Scholar 

  • Staubwasser M, Weiss H (2006) Holocene climate and cultural evolution in late prehistoric-early historic West Asia. Quat Res. https://doi.org/10.1016/j.yqres.2006.09.001

    Article  Google Scholar 

  • Stewart RA, Pilkey OH, Nelson BW (1965) Sediments of the Northern Arabian Sea. Mar Geol 3:411–427

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230

    Article  Google Scholar 

  • Stuiver M, Reimer PJ, Reimer RW (2010) CALIB 6.0. Available online from http://calib.qub.ac.uk/calib

  • Subramanian V (1985) Geochemistry of river basins in the Indian Subcontinent, part I: water chemistry, chemical erosion and water-mineral equilibria. Transp Carbon Min Major World Rivers, Part 3 58: 495–512. In: Degens ET, Kempe S (eds) Mittilungen aus dem Geologisch-Palaeontologischen, Institut der Universitat Hamburg

    Google Scholar 

  • Subramanian V (1993) Sediment load of Indian rivers. Curr Sci 64:928–930

    Google Scholar 

  • Thamban M, Kawahata H, Rao VP (2007) Indian summer monsoon variability during the Holocene as recorded in sediments of the Arabian Sea: timing and implications. J Oceanogr 63:1009–1020

    Article  Google Scholar 

  • Thamban M, Rao VP, Schneider RR (2002) Reconstruction of late quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India. Mar Geol 186:527–539

    Article  Google Scholar 

  • Tiwari MR, Ramesh MG, Yadava BLK, Somayajulu AJ, Jull T, Burr S (2006) Is there a persistent control of monsoon winds by precipitation during the late Holocene. Geochem Geophys Geosys 7:Q03001. https://doi.org/10.1029/2005GC001095

    Article  Google Scholar 

  • Triantaphyllou MV, Antonarakou A, Dimiza M, Anagnostou C (2009) Calcareous nannofossil and planktonic foraminiferal distributional patterns during deposition of Sapropels S6, S5 and S1 in the Libyan Sea (Eastern Mediterranean). Geo-Mar Lett 30(1):1–13

    Article  Google Scholar 

  • Twiss PCA (2001) Curmudgeons view of Grass Phytolithology. Phytoliths: Appl Earth Sci Human History. In: Meunier JD, Colin F (eds) A. A. Balkema Publishers, Lisse, pp 7–25

    Google Scholar 

  • Varkey MJ, Murty VSN, Suryanarayana A (1996) Physical oceanography of the Bay of Bengal and Andaman sea. Oceanogr Mar Biol 34:1–70

    Google Scholar 

  • Vollweiler N, Scholz D, Muhlinghaus C, Mangini A, Spotl C (2006) A precisely dated climate record for the last 9 kyr from three high alpine stalagmites, Spannagel Cave, Austria. Geophys Res Lett 33:L20703. https://doi.org/10.1029/2006GL027662

    Article  Google Scholar 

  • Von Rad U, Schaaf M, Michels KH, Schulz HW, Berger H, Sirocko F (1999) A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, Northeastern Arabian Sea. Quat Res 51:39–53

    Article  Google Scholar 

  • Wang PX (1999) Response of western Pacific marginal seas to glacial cycles: palaeoceanographic and sedimentological features. Mar Geol 16:5–39

    Article  Google Scholar 

  • Wang T, Surge D, Walker K Jo (2013) Seasonal climate change across the Roman Warm Period/Vandal Minimum transition using isotope sclerochronology in archaeological shells and otoliths, southwest Florida, USA. Quat Int 308–309:230–241. https://doi.org/10.1016/j.quaint.2012.11.013

    Article  Google Scholar 

  • Wang B, Wu R, Li T (2003) Atmosphere–warm ocean interaction and its impact on Asian-Australian monsoon variation. J Clim 16:1195–1211

    Google Scholar 

  • Weaver CE (1989) Clays, muds and shales, vol 44. Developments in: Sedimentology. Elsevier, Amsterdam, p 819

    Google Scholar 

  • Wei GJ, Liu Y, Li XH, Shao L, Liang X (2003) Climatic impact on Al, K, Sc and Ti in marine sediments: evidence from ODP site 1144, South China Sea. Geochem J 37:593–602

    Article  Google Scholar 

  • Werner JP, Wang J, Gómez-Navarro JJ, Steiger N, Neukom R (2019) No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571:550–554. https://doi.org/10.1038/s41586-019-1401-2

    Article  Google Scholar 

  • Xiao JL, Wu JT, Si B, Liang WD, Nakamura T, Liu BL, Inouchi Y (2006) Holocene climate changes in the monsoon/arid transition reflected by carbon concentration in Daihai Lake of Inner Mongolia. Holocene 16:551–560

    Article  Google Scholar 

  • Xu H, Hong Y, Lin Q, Hong B, Jiang H, Zhu Y (2002) Temperature variations in the past 6000 years inferred from 618O of peat cellulose from Hongyuan, China. Chinese Sci Bull 7:1578–1584

    Article  Google Scholar 

  • Yadava MG, Ramesh R (2005) Monsoon reconstruction from radiocarbon dated tropical Indian Speleothem. Holocene 15:48–59

    Article  Google Scholar 

  • Yadava MG, Ramesh R, Pandarinath K (2007) A positive ‘amount effect’ in the Sahayadri (Western Ghats) rainfall. Curr Sci 93:560–564

    Google Scholar 

  • Yang B, Braeuning A, Johnson KR, Yafeng S (2002) General characteristics of temperature variation in China during the last two millennia. Geophys Res Lett, vol 29. https://doi.org/10.1029/2001gl014485

Download references

Acknowledgements

We thank Dr. Jyotiranjan Ray, PRL Ahmedabad for giving us an opportunity to submit this manuscript and the two anonymous reviewers who painstakingly read through our work and suggested constructive comments that helped in the presentation of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Achyuthan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagasundaram, M., Achyuthan, H., Rai, J. (2020). Mid to Late Holocene Reconstruction of the Southwest Monsoonal Shifts Based on a Marine Sediment Core, off the Landfall Island, Bay of Bengal. In: Ray, J., Radhakrishna, M. (eds) The Andaman Islands and Adjoining Offshore: Geology, Tectonics and Palaeoclimate. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-030-39843-9_15

Download citation

Publish with us

Policies and ethics