Skip to main content

Accurate Molecular Dynamics Enabled by Efficient Physically Constrained Machine Learning Approaches

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 968))

Abstract

We develop a combined machine learning (ML) and quantum mechanics approach that enables data-efficient reconstruction of flexible molecular force fields from high-level ab initio calculations, through the consideration of fundamental physical constraints. We discuss how such constraints are recovered and incorporated into ML models. Specifically, we use conservation of energy—a fundamental property of closed classical and quantum mechanical systems—to derive an efficient gradient-domain machine learning (GDML) model. The challenge of constructing conservative force fields is accomplished by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. We proceed with the development of a multi-partite matching algorithm that enables a fully automated recovery of physically relevant point group and fluxional symmetries from the training dataset into a symmetric variant of our model. The symmetric GDML (sGDML) approach is able to faithfully reproduce global force fields at the accuracy high-level ab initio methods, thus enabling sample intensive tasks like molecular dynamics simulations at that level of accuracy. (This chapter is adapted with permission from Chmiela (Towards exact molecular dynamics simulations with invariant machine-learned models, PhD thesis. Technische Universität, Berlin, 2019).)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For illustrative purposes, we use the definition of curl in three dimensions here, but the theory directly generalizes to arbitrary dimension. One way to prove this is via path-independence of conservative vector fields: the circulation of a gradient along any closed curve is zero and the curl is the limit of such circulations.

References

  1. M.E. Tuckerman, Ab initio molecular dynamics: basic concepts, current trends and novel applications. J. Phys. Condens. Matter 14(50), R1297 (2002)

    Google Scholar 

  2. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. Von Lilienfeld. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108(5), 58301 (2012)

    Google Scholar 

  3. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. von Lilienfeld, A. Tkatchenko, K.-R. Müller, Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9(8), 3404–3419 (2013)

    Article  Google Scholar 

  4. K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.-R. Müller, A. Tkatchenko, Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6(12), 2326–2331 (2015)

    Article  Google Scholar 

  5. M. Rupp, R. Ramakrishnan, O.A. von Lilienfeld, Machine learning for quantum mechanical properties of atoms in molecules. J. Phys. Chem. Lett. 6(16), 3309–3313 (2015)

    Article  Google Scholar 

  6. V. Botu, R. Ramprasad, Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int. J. Quantum Chem. 115(16), 1074–1083 (2015)

    Article  Google Scholar 

  7. M. Hirn, N. Poilvert, S. Mallat, Quantum energy regression using scattering transforms. CoRR, abs/1502.02077 (2015)

    Google Scholar 

  8. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. von Lilienfeld, Big data meets quantum chemistry approximations: the δ-machine learning approach. J. Chem. Theory Comput. 11(5), 2087–2096 (2015)

    Article  Google Scholar 

  9. S. De, A.P. Bartók, G. Csányi, M. Ceriotti, Comparing molecules and solids across structural and alchemical space. Phys. Chem. Chem. Phys. 18(20), 13754–13769 (2016)

    Article  Google Scholar 

  10. N. Artrith, A. Urban, G. Ceder, Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Phys. Rev. B 96(1), 14112 (2017)

    Google Scholar 

  11. A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Csányi, M. Ceriotti, Machine learning unifies the modeling of materials and molecules. Sci. Adv. 3(12), e1701816 (2017)

    Google Scholar 

  12. A. Glielmo, P. Sollich, A. De Vita, Accurate interatomic force fields via machine learning with covariant kernels. Phys. Rev. B 95, 214302 (2017)

    Article  ADS  Google Scholar 

  13. K. Yao, J.E. Herr, J. Parkhill, The many-body expansion combined with neural networks. J. Chem. Phys. 146(1), 14106 (2017)

    Google Scholar 

  14. S.T. John, G. Csányi, Many-body coarse-grained interactions using Gaussian approximation potentials. J. Phys. Chem. B 121(48), 10934–10949 (2017)

    Article  Google Scholar 

  15. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals, S. Kearnes, P.F. Riley, O.A. von Lilienfeld, Prediction errors of molecular machine learning models lower than hybrid DFT error. J. Chem. Theory Comput. 13(11), 5255–5264 (2017)

    Article  Google Scholar 

  16. M. Eickenberg, G. Exarchakis, M. Hirn, S. Mallat, L. Thiry, Solid harmonic wavelet scattering for predictions of molecule properties. J. Chem. Phys. 148(24), 241732 (2018)

    Google Scholar 

  17. A. Glielmo, C. Zeni, A. De Vita, Efficient nonparametric n-body force fields from machine learning. Phys. Rev. B 97(18), 184307 (2018)

    Google Scholar 

  18. Y.-H. Tang, D. Zhang, G. Em Karniadakis, An atomistic fingerprint algorithm for learning ab initio molecular force fields. J. Chem. Phys. 148(3), 34101 (2018)

    Google Scholar 

  19. A. Grisafi, D.M. Wilkins, G. Csányi, M. Ceriotti, Symmetry-adapted machine learning for tensorial properties of atomistic systems. Phys. Rev. Lett. 120, 36002 (2018)

    Article  ADS  Google Scholar 

  20. W. Pronobis, A. Tkatchenko, K.-R. Müller, Many-body descriptors for predicting molecular properties with machine learning: analysis of pairwise and three-body interactions in molecules. J. Chem. Theory Comput. 14(6), 2991–3003 (2018)

    Article  Google Scholar 

  21. J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98(14), 146401 (2007)

    Google Scholar 

  22. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104(13), 136403 (2010)

    Google Scholar 

  23. K.V. Jovan Jose, N. Artrith, J. Behler, Construction of high-dimensional neural network potentials using environment-dependent atom pairs. J. Chem. Phys. 136(19), 194111 (2012)

    Google Scholar 

  24. A.P. Bartók, R. Kondor, G. Csányi, On representing chemical environments. Phys. Rev. B 87(18), 184115 (2013)

    Google Scholar 

  25. G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15(9), 95003 (2013)

    Google Scholar 

  26. A.P. Bartók, G. Csányi, Gaussian approximation potentials: a brief tutorial introduction. Int. J. Quantum Chem. 115(16), 1051–1057 (2015)

    Article  Google Scholar 

  27. V. Botu, R. Ramprasad, Learning scheme to predict atomic forces and accelerate materials simulations. Phys. Rev. B 92, 94306 (2015)

    Article  ADS  Google Scholar 

  28. T. Bereau, D. Andrienko, O.A. von Lilienfeld, Transferable atomic multipole machine learning models for small organic molecules. J. Chem. Theory Comput. 11(7), 3225–3233 (2015)

    Article  Google Scholar 

  29. Z. Li, J.R. Kermode, A. De Vita, Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 96405 (2015)

    Article  ADS  Google Scholar 

  30. J. Behler, Perspective: machine learning potentials for atomistic simulations. J. Chem. Phys. 145(17), 170901 (2016)

    Google Scholar 

  31. F. Brockherde, L. Vogt, L. Li, M.E. Tuckerman, K. Burke, K.-R. Müller, Bypassing the Kohn-Sham equations with machine learning. Nat. Commun. 8, 872 (2017)

    Article  ADS  Google Scholar 

  32. M. Gastegger, J. Behler, P. Marquetand, Machine learning molecular dynamics for the simulation of infrared spectra. Chem. Sci. 8, 6924–6935 (2017)

    Article  Google Scholar 

  33. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.-R. Müller, A. Tkatchenko, Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)

    Article  ADS  Google Scholar 

  34. K. Schütt, P.-J. Kindermans, H.E. Sauceda, S. Chmiela, A. Tkatchenko, K.-R. Müller, SchNet: a continuous-filter convolutional neural network for modeling quantum interactions, in Advances in Neural Information Processing Systems, vol. 31, pp. 991–1001 (2017)

    Google Scholar 

  35. K.T. Schütt, H.E. Sauceda, P.-J. Kindermans, A. Tkatchenko, K.-R. Müller, SchNet—A deep learning architecture for molecules and materials. J. Chem. Phys. 148(24), 241722 (2018)

    Google Scholar 

  36. B. Huang, O.A. von Lilienfeld, The “DNA” of chemistry: scalable quantum machine learning with “amons”. arXiv preprint:1707.04146 (2017)

    Google Scholar 

  37. T.D. Huan, R. Batra, J. Chapman, S. Krishnan, L. Chen, R. Ramprasad, A universal strategy for the creation of machine learning-based atomistic force fields. NPJ Comput. Mater. 3(1), 37 (2017)

    Google Scholar 

  38. E.V. Podryabinkin, A.V. Shapeev, Active learning of linearly parametrized interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017)

    Article  Google Scholar 

  39. P.O. Dral, A. Owens, S.N. Yurchenko, W. Thiel, Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels. J. Chem. Phys. 146(24), 244108 (2017)

    Google Scholar 

  40. L. Zhang, J. Han, H. Wang, R. Car, E. Weinan, Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120(14), 143001 (2018)

    Google Scholar 

  41. N. Lubbers, J.S. Smith, K. Barros, Hierarchical modeling of molecular energies using a deep neural network. J. Chem. Phys. 148(24), 241715 (2018)

    Google Scholar 

  42. K. Ryczko, K. Mills, I. Luchak, C. Homenick, I. Tamblyn, Convolutional neural networks for atomistic systems. Comput. Mater. Sci. 149, 134–142 (2018)

    Article  Google Scholar 

  43. K. Kanamori, K. Toyoura, J. Honda, K. Hattori, A. Seko, M. Karasuyama, K. Shitara, M. Shiga, A. Kuwabara, I. Takeuchi, Exploring a potential energy surface by machine learning for characterizing atomic transport. Phys. Rev. B 97(12), 125124 (2018)

    Google Scholar 

  44. T.S. Hy, S. Trivedi, H. Pan, B.M. Anderson, R. Kondor, Predicting molecular properties with covariant compositional networks. J. Chem. Phys. 148(24), 241745 (2018)

    Google Scholar 

  45. J. Wang, S. Olsson, C. Wehmeyer, A. Pérez, N.E. Charron, G. De Fabritiis, F. Noé, C. Clementi, Machine learning of coarse-grained molecular dynamics force fields. ACS Cent. Sci. 5(5), 755–767 (2019)

    Google Scholar 

  46. T. Bereau, R.A. DiStasio Jr., A. Tkatchenko, O.A. Von Lilienfeld, Non-covalent interactions across organic and biological subsets of chemical space: physics-based potentials parametrized from machine learning. J. Chem. Phys. 148(24), 241706 (2018)

    Google Scholar 

  47. A. Mardt, L. Pasquali, H. Wu, F. Noé, VAMPnets for deep learning of molecular kinetics. Nat. Commun. 9(1), 5 (2018)

    Google Scholar 

  48. F. Noé, S. Olsson, J. Köhler, H. Wu, Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. Science 365(6457), eaaw1147 (2019)

    Google Scholar 

  49. N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, P. Riley, Tensor field networks: rotation-and translation-equivariant neural networks for 3D point clouds. arXiv preprint:1802.08219 (2018)

    Google Scholar 

  50. J.S. Smith, B. Nebgen, N. Lubbers, O. Isayev, A. Roitberg, Less is more: sampling chemical space with active learning. J. Chem. Phys. 148(24), 241733 (2018)

    Google Scholar 

  51. K. Gubaev, E.V. Podryabinkin, A.V. Shapeev, Machine learning of molecular properties: locality and active learning. J. Chem. Phys. 148(24), 241727 (2018)

    Google Scholar 

  52. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, Alchemical and structural distribution based representation for universal quantum machine learning. J. Chem. Phys. 148(24), 241717 (2018)

    Google Scholar 

  53. A.S. Christensen, F.A. Faber, O.A. von Lilienfeld, Operators in quantum machine learning: response properties in chemical space. J. Phys. Chem. 150(6), 64105 (2019)

    Google Scholar 

  54. R. Winter, F. Montanari, F. Noé, D.-A. Clevert, Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem. Sci. 10(6), 1692–1701 (2019)

    Article  Google Scholar 

  55. K. Gubaev, E.V. Podryabinkin, G.L.W. Hart, A.V. Shapeev, Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Comput. Mater. Sci. 156, 148–156 (2019)

    Article  Google Scholar 

  56. E. Noether, Invarianten beliebiger Differentialausdrücke. Gött. Nachr. Mathematisch-Physikalische Klasse 1918, 37–44 (1918)

    MATH  Google Scholar 

  57. K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, B. Schölkopf, An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. Learn. Syst. 12(2), 181–201 (2001)

    Article  Google Scholar 

  58. B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, Cambridge, 2002)

    Google Scholar 

  59. G. Wahba, Spline Models for Observational Data, vol. 59 (SIAM, Philadelphia, 1990)

    Book  MATH  Google Scholar 

  60. B. Schölkopf, R. Herbrich, A.J. Smola, A generalized representer theorem, in International Conference on Computational Learning Theory (Springer, Berlin, 2001), pp. 416–426

    MATH  Google Scholar 

  61. C.E. Rasmussen, Gaussian processes in machine learning, in Advanced Lectures on Machine Learning (Springer, Berlin, 2004), pp. 63–71

    Book  MATH  Google Scholar 

  62. D. Duvenaud, Automatic Model Construction with Gaussian Processes, PhD thesis, University of Cambridge, Cambridge, 2014

    Google Scholar 

  63. C.A. Micchelli, Y. Xu, H. Zhang, Universal kernels. J. Mach. Learn. Res. 7(Dec), 2651–2667 (2006)

    MathSciNet  MATH  Google Scholar 

  64. A. Damianou, N. Lawrence, Deep Gaussian processes, in Artificial Intelligence and Statistics (2013), pp. 207–215

    Google Scholar 

  65. C. Lanczos, The Variational Principles of Mechanics (University of Toronto Press, Toronto, 1949)

    Book  MATH  Google Scholar 

  66. K. Brading, E. Castellani, Symmetries in Physics: Philosophical Reflections (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  67. D.J.C. MacKay, Introduction to Gaussian processes, in NATO ASI Series F: Computer and Systems Sciences, vol. 168 (Springer, Berlin, 1998)

    Google Scholar 

  68. A.J. Smola, B. Schölkopf, K.-R. Müller, The connection between regularization operators and support vector kernels. Neural Netw. 11(4), 637–649 (1998)

    Article  Google Scholar 

  69. C. Heil, Metrics, Norms, Inner Products, and Operator Theory (Birkhäuser, Basel, 2018)

    Google Scholar 

  70. A. Rahimi, B. Recht, Random features for large-scale kernel machines, in Advances in Neural Information Processing Systems (2008), pp. 1177–1184

    Google Scholar 

  71. P. Politzer, J.S. Murray, The Hellmann-Feynman theorem: a perspective. J. Mol. Model. 24(9), 266 (2018)

    Google Scholar 

  72. R.P. Feynman, Forces in molecules. Phys. Rev. 56(4), 340 (1939)

    Google Scholar 

  73. C.E. Shannon, Communication in the presence of noise. Proc. IEEE 86(2), 447–457 (1998)

    Article  Google Scholar 

  74. S. Chmiela, Towards Exact Molecular Dynamics Simulations with Invariant Machine-Learned Models, PhD thesis. Technische Universität, Berlin, 2019

    Google Scholar 

  75. T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics (Springer, Berlin, 2009)

    Google Scholar 

  76. M.A. Alvarez, L. Rosasco, N.D. Lawrence, et al., Kernels for vector-valued functions: a review. Found. Trends Mach. Learn. 4(3), 195–266 (2012)

    Article  MATH  Google Scholar 

  77. P. Boyle, M. Frean, Dependent Gaussian processes, in Advances in Neural Information Processing Systems (2005), pp. 217–224

    Google Scholar 

  78. C.A. Micchelli, M. Pontil, On learning vector-valued functions. Neural Comput. 17(1), 177–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  79. C.A. Micchelli, M. Pontil, Kernels for multi-task learning, in Advances in Neural Information Processing Systems (2005), pp. 921–928

    Google Scholar 

  80. L. Baldassarre, L. Rosasco, A. Barla, A. Verri, Multi-output learning via spectral filtering. Mach. Learn. 87(3), 259–301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  81. T. Graepel, Solving noisy linear operator equations by Gaussian processes: application to ordinary and partial differential equations, in International Conference on Machine Learning (2003), pp. 234–241

    Google Scholar 

  82. S. Särkkä, Linear operators and stochastic partial differential equations in Gaussian process regression, in International Conference on Artificial Neural Networks (Springer, Berlin, 2011), pp. 151–158

    Google Scholar 

  83. E.M. Constantinescu, M. Anitescu, Physics-based covariance models for Gaussian processes with multiple outputs. Int. J. Uncertain. Quantif. 3(1) (2013)

    Google Scholar 

  84. N.C. Nguyen, J. Peraire, Gaussian functional regression for linear partial differential equations. Comput. Methods Appl. Mech. Eng. 287, 69–89 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. C. Jidling, N. Wahlström, A. Wills, T.B. Schön, Linearly constrained Gaussian processes, in Advances in Neural Information Processing Systems (2017), pp. 1215–1224

    Google Scholar 

  86. F.J. Narcowich, J.D. Ward, Generalized Hermite interpolation via matrix-valued conditionally positive definite functions. Math. Comput. 63(208), 661–687 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. E. Solak, R. Murray-Smith, W.E. Leithead, D.J. Leith, C.E. Rasmussen, Derivative observations in Gaussian process models of dynamic systems, in Advances in Neural Information Processing Systems (2003), pp. 1057–1064

    Google Scholar 

  88. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.-R. Müller, Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3(5), e1603015 (2017)

    Google Scholar 

  89. S. Chmiela, H.E. Sauceda, I. Poltavsky, K.-R. Müller, A. Tkatchenko, sGDML: constructing accurate and data efficient molecular force fields using machine learning. Comput. Phys. Commun. 240, 38–45 (2019)

    Article  ADS  Google Scholar 

  90. H.C. Longuet-Higgins, The symmetry groups of non-rigid molecules. Mol. Phys. 6(5), 445–460 (1963)

    Article  ADS  MATH  Google Scholar 

  91. E.B. Wilson, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (McGraw-Hill Interamericana, New York, 1955)

    Google Scholar 

  92. D. Pachauri, R. Kondor, V. Singh, Solving the multi-way matching problem by permutation synchronization, in Advances in Neural Information Processing Systems (2013), pp. 1860–1868

    Google Scholar 

  93. M. Schiavinato, A. Gasparetto, A. Torsello, Transitive Assignment Kernels for Structural Classification (Springer, Cham, 2015), pp. 146–159

    Google Scholar 

  94. N.M. Kriege, P.-L. Giscard, R.C. Wilson, On valid optimal assignment kernels and applications to graph classification, in Advances in Neural Information Processing Systems, vol. 30 (2016), pp. 1623–1631

    Google Scholar 

  95. J.-P. Vert, The optimal assignment kernel is not positive definite. CoRR, abs/0801.4061 (2008)

    Google Scholar 

  96. S. Umeyama, An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)

    Article  MATH  Google Scholar 

  97. H.W. Kuhn, The Hungarian method for the assignment problem. Nav. Res. Logist. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  98. L. van der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2579–2605), 85 (2008)

    Google Scholar 

  99. T. Karvonen, S. Särkkä, Fully symmetric kernel quadrature. SIAM J. Sci. Comput. 40(2), A697–A720 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  100. B. Haasdonk, H. Burkhardt, Invariant kernel functions for pattern analysis and machine learning. Mach. Learn. 68(1), 35–61 (2007)

    Article  Google Scholar 

  101. S. Chmiela, H.E. Sauceda, K.-R. Müller, A. Tkatchenko, Towards exact molecular dynamics simulations with machine-learned force fields. Nat. Commun. 9(1), 3887 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Chmiela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chmiela, S., Sauceda, H.E., Tkatchenko, A., Müller, KR. (2020). Accurate Molecular Dynamics Enabled by Efficient Physically Constrained Machine Learning Approaches. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_7

Download citation

Publish with us

Policies and ethics