Skip to main content

Calcium Signaling in Plants Under Drought

  • Chapter
  • First Online:
Salt and Drought Stress Tolerance in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Environmental stresses are among the most important threats for food security since it adversely affects agricultural productivity. Among them, drought stress and water scarcity stand as major problems, especially in developing countries. Thus, understanding molecular mechanisms involving drought stress response is of essential importance for coping with its detrimental effects. Calcium is an essential macro-element, taking part in the regulation of many aspects of plant growth and development along with playing the role of ubiquitous secondary messenger, thus taking part in the generation of adaptive responses toward various developmental and environmental stimuli. Therefore, understanding the calcium signaling and calcium-dependent processes is crucial for improving plant productivity under environmental stresses. Formation of calcium signature through subsequent oscillations is at the onset of calcium signaling which further activates calcium-binding proteins which are acting as signal decoders, makes it possible to perceive the nature of stimuli. Further, protein kinases and transcription factors are activated in a stimuli-specific manner to create a stress-specific response. Understanding of calcium signaling processes and modulations is a promising step for unraveling the molecular mechanism of drought stress tolerance and engineering stress-tolerant crops. In this chapter, calcium-signaling components involving in drought stress signal perception and transition through calcium-signaling pathway and final formation of stress response have been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdula SE, Lee H-J, Ryu H, Kang KK, Nou I, Sorrells ME, Cho YG (2015) Overexpression of BrCIPK1 gene enhances abiotic stress tolerance by increasing proline biosynthesis in Rice. Plant Mol Biol Rep 34:501–511

    Article  CAS  Google Scholar 

  • Albrecht V, Ritz O, Linder S, Harter K, Kudla J (2001) The NAF domain defines a novel protein protein interaction module conserved in Ca2+ regulated kinases. EMBO J 20(5):1051–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albrecht V, Weinl S, Blazevic D, D’angelo C, Batistic O, Kolukisaoglu Ü, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36(4):457–470

    Google Scholar 

  • Aliniaeifard S (2014) Signal transduction pathways in guard cells after prolonged exposure to low vapour pressure deficits. Wageningen University (PhD thesis)

    Google Scholar 

  • Aliniaeifard S, van Meeteren U (2013) Can prolonged exposure to low VPD disturb the ABA signaling in stomatal guard cells? J Exp Bot 64(12):3551–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliniaeifard S, Van Meeteren U (2018) Natural genetic variation in stomatal response can help to increase acclimation of plants to dried environments. Acta Hortic 1190:71–76

    Google Scholar 

  • Aliniaeifard S, van Meeteren U (2014) Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning. J Exp Bot 65(22):6529–6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliniaeifard S, Malcolm Matamoros P, van Meeteren U (2014) Stomatal malfunctioning under low vapor pressure deficit (VPD) conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? Physiol Plant 152:688–699

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Kwak JM, Chu SP, Llopis J, Tsien RY, Harper JF, Schroeder JI (1999) Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19(6):735–747

    Google Scholar 

  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke S, Tallman G, Tsien RY, Harper JF, Chory J (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289(5488):2338–2342

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffman T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411(6841):1053

    Article  CAS  PubMed  Google Scholar 

  • Bànfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnàr GZ, Krause KH, Cox JA (2004) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279:18583–18591

    Article  PubMed  CAS  Google Scholar 

  • Barry H (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Batistic O, Kudla J (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219(6):915–924

    Article  CAS  PubMed  Google Scholar 

  • Batistič O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim Biophys Acta 1820(8):1283–1293

    Google Scholar 

  • Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid Khaled AS, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N, Mendel Ralf R, Bittner F, Hetherington Alistair M, Hedrich R (2012) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 23(1):53–57

    Article  PubMed  CAS  Google Scholar 

  • Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296:2026–2028

    Article  CAS  PubMed  Google Scholar 

  • Beckmann L, Edel KH, Batistič O, Kudla J (2016) A calcium sensor–protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species. Sci Rep 6:31645

    Google Scholar 

  • Bender KW, Snedden WA (2013) Calmodulin-related proteins step out from the shadow of their namesake. Plant Physiol 113

    Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol 1(1):11

    Article  CAS  Google Scholar 

  • Blatt MR (2000) Ca2+ signalling and control of guard-cell volume in stomatal movements. Curr Opin Pant Biol 3(3):196–204

    Article  CAS  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65(5):1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Bothwell JHF, Ng CKY (2005) The evolution of Ca2+ signalling in photosynthetic eukaryotes. New Phytol 166(1):21–38

    Article  CAS  PubMed  Google Scholar 

  • Bouché N, Scharlat A, Snedden W, Bouchez D, Fromm H (2002) A novel family of calmodulin binding transcription activators in multicellular organisms. J Biol Chem 277(24):21851–21861

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Yellin A, Snedden WA, Fromm H (2005) Plant specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    Article  PubMed  CAS  Google Scholar 

  • Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18(1):30–40

    Article  CAS  PubMed  Google Scholar 

  • Brandt B, Brodsky DE, Xue S, Negi J, Iba K, Kangasjärvi J, Ghassemian M, Stephan AB, Hu H, Schroeder JI (2012) Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. PNAS 109(26):10593–10598

    Google Scholar 

  • Brandt B, Munemasa S, Wang C, Nguyen D, Yong T, Yang PG, Poretsky E, Belknap TF, Waadt R, Alemán F, Schroeder JI (2015) Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. Elife 4:e03599

    Article  PubMed Central  Google Scholar 

  • Brivanlou AH, Darnell JE (2002) Signal transduction and the control of gene expression. Science 295(5556):813–818

    Article  CAS  PubMed  Google Scholar 

  • Burstrom HG (1968) Calcium and plant growth. Biol Rev 43(3):287–316

    Article  CAS  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Biol 46(1):95–122

    Article  CAS  Google Scholar 

  • Carafoli E, Santella L, Branca D, Brini M (2001) Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36(2):107–260

    Article  CAS  PubMed  Google Scholar 

  • Chehab EW, Patharkar OR, Hegeman AD, Taybi T, Cushman JC (2004) Autophosphorylation and subcellular localization dynamics of a salt and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiol 135(3):1430–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium dependent protein kinase gene family. Plant Physiol 129(2):469–485

    Google Scholar 

  • Chen YL, Huang R, Xiao YM, Lu P, Chen J, Wang XC (2004) Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiol 136(4):4096–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Gu Z, Xin D, Hao L, Liu C, Huang J, Ma B, Zhang H (2011) Identification and characterization of putative CIPK genes in maize. J Genet Genom 38(2):77–87

    Article  CAS  Google Scholar 

  • Chen J, Xue B, Xia X, Yin W (2013b) A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance. Biochem Biophys Res Commun 441(3):630–636

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wang QQ, Zhou L, Ren F, Li DD, Li XB (2013a) Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol Biol Rep 40(8):4759–4767

    Article  CAS  PubMed  Google Scholar 

  • Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15(8):18331845

    Article  CAS  Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52(2):223–239

    Article  CAS  PubMed  Google Scholar 

  • Cheong YH, Sung SJ, Kim BG, Pandey GK, Cho JS, Kim KN, Luan S (2010) Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells 29(2):159–165

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Park HJ, Park JH, Kim S, Im M-Y, Seo H-H, Kim Y-W, Hwang I, Kim SY (2005a) Arabidopsis calcium dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid responsive gene expression, and modulates its activity. Plant Physiol 139(4):1750–1761

    Google Scholar 

  • Choi MS, Kim MC, Yoo JH, Moon BC, Koo SC, Park BO, Lee JH, Koo YD, Han HJ, Lee SY, Chung WS (2005b) Isolation of a calmodulin binding transcription factor from rice (Oryza sativa L.). J Biol Chem 280(49):40820–40831

    Google Scholar 

  • Clarkson DT (1984) Calcium transport between tissues and its distribution in the plant. Plant Cell Environ 7(6):449–456

    Article  CAS  Google Scholar 

  • Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105(7):1081–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuéllar T, Pascaud F, Verdeil JL, Torregrosa L, Adam-Blondon AF, Thibaud JB, Sentenac H, Gaillard I (2010) A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1–protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J 61(1):58–69

    Article  PubMed  CAS  Google Scholar 

  • Cui XY, Du YT, Fu JD, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS (2018) Wheat CBL interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biol 18(1):93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abram SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • D’angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S (2006) Alternative complex formation of the Ca2+‐regulated protein kinase CIPK1 controls abscisic acid‐dependent and independent stress responses in Arabidopsis. Plant J 48(6):857–872

    Google Scholar 

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate–stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Dauwalder M, Roux SJ, Hardison L (1986) Distribution of calmodulin in pea seedlings: immune cytochemical localization in plumules and root apices. Planta 168(4):461–470

    Article  CAS  PubMed  Google Scholar 

  • DeFalco TA, Bende KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425(1):27–40

    Article  CAS  Google Scholar 

  • De Freitas ST, Mitcham EI (2012) 3 factors involved in fruit calcium deficiency disorders. Hortic Rev 40(1):107–146

    Article  Google Scholar 

  • De Freitas ST, Shackel KA, Mitcham EJ (2011) Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. J Exp Bot 62(8):2645–2656

    Article  PubMed  CAS  Google Scholar 

  • del Carmen Martínez-Ballesta M, del Carmen Rodríguez-Hernández M, Alcaraz-López C, Mota-Cadenas C, Muries B, Carvajal M (2011) Plant hydraulic conductivity: The aquaporins contribution. Hydraulic Conductivity: Issues, Determination and Applications, p 103

    Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. EEB 109:212–228

    CAS  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175(3):387–404

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53(1):67–107

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Shang Z, Shin R, Thompson E, Rubio L, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala SN, Davies JM (2009) Plant extracellular ATP signaling by plasma membrane NADPH oxidase and Ca2+ channels. Plant J 58(6):903–913

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Soheila AH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127(1):159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61(593):620

    Google Scholar 

  • Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte C-P, Schulze WX, Romeis T (2013) Calcium dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. PNAS 110(21):8744–8749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • E Silva ODC (1994) CG-1, a parsley light-induced DNA-binding protein. Plant Mol Biol 25(5):921–924

    Article  Google Scholar 

  • Edel KH, Kudla J (2015) Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization. Cell Calcium 57(3):231–246

    Article  CAS  PubMed  Google Scholar 

  • Edel KH, Kudla J (2016) Integration of calcium and ABA signaling. Curr Opin Plant Biol 33:83–91

    Google Scholar 

  • Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147(4):1984–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Wiley, New York

    Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol 4(5):415–420

    Article  CAS  PubMed  Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM, Knight MR (2005) ROS perception in Arabidopsis thaliana: The ozone induced calcium response. Plant J 41(4):615–626

    Article  CAS  PubMed  Google Scholar 

  • Fageria NK (2016) The use of nutrients in crop plants. CRC Press

    Google Scholar 

  • Fasano JM, Mass GD, Gilroy S (2002) Ionic signaling in plant responses to gravity and touch. J Plant Growth Regul 21(2):71–88

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Rock C (2002) Abscisic acid biosynthesis and signaling. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD, pp 1–48

    Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torre MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930):442

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in prospect? Plant Cell Environ 39(5):951–964

    Article  CAS  PubMed  Google Scholar 

  • Franz S, Ehlert B, Liese A, Kurth J, Cazalé AC, Romeis T (2011) Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Mol Plant 4(1):83–96

    Article  CAS  PubMed  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KAS, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. PNAS 106(50):21425–21430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Marten IAPPL, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KAS, Grill E, Romeis T (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. PNAS 107(17):8023–8028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11(10):1897–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Xiong L, Song CP, Gon D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3(2):233–244

    Article  CAS  PubMed  Google Scholar 

  • Hamilton DWA, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. PNAS 97(9):4967–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Tang R, Anderson LK, Woerner TE, Pei Z-M (2003) A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425(6954):196

    Article  CAS  PubMed  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs—a kinase for every Ca2+ signal? Trends Plant Sci 5(4):154–159

    Article  CAS  PubMed  Google Scholar 

  • Harmon AC, Gribskov M, Gubrium E, Harper JF (2001) The CDPK superfamily of protein kinases. New Phytol 151(1):175–183

    Article  CAS  PubMed  Google Scholar 

  • Harper JF, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55:263–288

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Kudla J (2011) Calcium decoding mechanisms in plants. Biochimie 93(12):2054–2059

    Google Scholar 

  • He L, Yang X, Wang L, Zhu L, Zhou T, Deng J, Zhang X (2013) Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem Biophys Res Commun 435(2):209–215

    Article  CAS  PubMed  Google Scholar 

  • Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9(12):3889–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepler PK, Winship LJ (2010) Calcium at the cell wall-cytoplast interface. J Integr Plant Biol 52(2):147–160

    Article  CAS  PubMed  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427

    Article  CAS  PubMed  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424(6951):901

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61(6):1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hirschi K (2001) Vacuolar H+/Ca2+ transport: who’s directing the traffic? Trends Plant Sci 6(3):100–104

    Article  CAS  PubMed  Google Scholar 

  • Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108(6):739–742

    Article  CAS  PubMed  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132(2):666–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh HL, Song CJ, Roux SJ (2000) Regulation of a recombinant pea nuclear apyrase by calmodulin and casein kinase II. BBA-Gene Struct Expr 1494(3):248–255

    Article  CAS  Google Scholar 

  • Hu XY, Neill SJ, Cai WM, Tang ZC (2004) Induction of defence gene expression by oligogalacturonic acid requires increases in both cytosolic calcium and hydrogen peroxide in Arabidopsis thaliana. Cell Res 14(3):234

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Xia Z, Yan Y, Ding Z, Tie W, Wang L, Zou M, Wei Y, Lu C, Hou X, Wang W (2015) Genome wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought induced genes. Front Plant Sci 6:914

    PubMed  PubMed Central  Google Scholar 

  • Hu W, Yan Y, Tie W, Ding Z, Wu C, Ding X, Wang W, Xia Z, Guo J, Peng M (2018) Genome wide analyses of calcium sensors reveal their involvement in drought stress response and storage roots deterioration after harvest in cassava. Genes 9(4):221

    Article  PubMed Central  CAS  Google Scholar 

  • Huang QS, Wang HY, Gao P, Wan, GY, Xia GX (2008) Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development. Plant Cell Rep 27(12):1869

    Google Scholar 

  • Hua D, Wang, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid-and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 112

    Google Scholar 

  • Hubbard KE, Siegel RS, Valerio G, Brandt B, Schroeder JI (2011) Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus–response analyses. Ann Bot 109(1):5–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huda KM, Banu MSA, Garg B, Tula S, Tuteja R, Tuteja N (2013) OsACA 6, a P-type IIB Ca2+ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. Plant J 76(6):997–1015

    Article  CAS  PubMed  Google Scholar 

  • Israelsson M, Siegel RS, Young J, Hashimoto M, Iba K, Schroeder JI (2006) Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr Opin Plant Biol 9(6):654–663

    Google Scholar 

  • Jagnandan D, Church JE, Banfi B, Stuehr DJ, Marrero MB, Fulton DJ (2007) Novel mechanism of activation of NADPH oxidase 5 calcium sensitization via phosphorylation. J Biol Chem 282(9):6494–6507

    Article  CAS  PubMed  Google Scholar 

  • Janiak A, Kwaśniewski M, Szarejko I (2015) Gene expression regulation in roots under drought. J Exp Bot 67(4):1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Jiang S, Zhang D, Wang L, Pan Liu Y, Kong X, Zhou Y, Li D (2013) A maize calcium dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem 71:112–120

    Article  CAS  PubMed  Google Scholar 

  • Joshi-Saha A, Valon C, Leung J (2011) Abscisic acid signal off the STARTing block. Mol Plant 4(4):562–580

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarek M, Fedorowicz-Strońska O, Głowacka K, Waśkiewicz A, Sadowski J (2017) CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiol Plant 39(1):41

    Google Scholar 

  • Kalaipandian S, Xue GP, Rae AL, Glassop D, Bonnett GD, McIntyre LC (2018) Overexpression of TaCML20, a calmodulin-like gene, enhances water soluble carbohydrate accumulation and yield in wheat. Physiol Plant 165(4):790–799

    Article  PubMed  CAS  Google Scholar 

  • Kanwar P, Sanyal SK, Tokas I, Yadav AK, Pandey A, Kapoor S, Pandey GK (2014) Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Cell Calcium 56(2):81–95

    Article  CAS  PubMed  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+ responsive cis elements in Arabidopsis. Plant Cell 18(10):2733–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KN, Cheong H, Grant JJ, Pandey GK, Luan S (2003) CIPK3, a calcium sensor associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15(2):411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61(561):591

    Google Scholar 

  • Kleist TJ, Spencley AL, Luan S (2014) Comparative phylogenomics of the CBL-CIPK calcium decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages. Front Plant Sci 5:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Klimecka M, Muszynska G (2007) Structure and functions of plant calcium-dependent protein kinases. Acta Biochim (Pol-English Edition) 54(2):219

    Article  CAS  Google Scholar 

  • Knight MR, Read ND, Campbell AK, Trewavas AJ (1993) Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins. J Cell Biol 121(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8(3):489–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12(5):1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid‐activated SNRK2 protein kinases function in the gene‐regulation pathway of ABA signal transduction by phosphorylating ABA response element‐binding factors. Plant J 44(6):939–949

    Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19(3):1065–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler B, Blatt MR (2002) Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. Plant J 32(2):185–194

    Article  PubMed  Google Scholar 

  • Kolukisaoglu Ü, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134(1):43–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosuta S, Hazledine S, Sun J, Miwa H, Morris R, Downie JA, Oldroyd GE (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. PNAS 105(28):9823–9828

    Google Scholar 

  • Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins I Arabidopsis are differentially regulated by stress signals. PNAS 96(8):4718–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K (2018) Advances and current challenges in calcium signaling. New Phytol 218(2):414–431

    Article  PubMed  Google Scholar 

  • La Verde V, Dominici P, Astegno A (2018) Towards understanding plant calcium signaling through calmodulin-like proteins: a biochemical and structural perspective. Int J Mol Sci 19(5):1331

    Article  PubMed Central  CAS  Google Scholar 

  • Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinge B, Pfister B, Csaszar E, Hedrich R, Teige M, Becker D (2013) Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs). Mol Plant 6(4):1274–1289

    Article  CAS  PubMed  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171(2):249–269

    Article  CAS  PubMed  Google Scholar 

  • Levchenko V, Konrad KR, Dietrich P, Roelfsema MRG, Hedrich R (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. PNAS 102(11):4203–4208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine A, Pennell RI, Alvarez M, Palmer R, Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol 6(4):427–437

    Article  CAS  PubMed  Google Scholar 

  • Li J, Assmann SM (1996) An abscisic acid-activated and calcium independent protein kinase from guard cells of faba bean. Plant Cell 8(12):2359–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Lee YRJ, Assmann SM (1998) Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol 116(2):785–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang XQ, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287(5451):300–303

    Article  CAS  PubMed  Google Scholar 

  • Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4(10):e312

    Google Scholar 

  • Li AL, Zhu YF, Tan XM, Wang X, Wei B, Gu HZ, Zhang ZL, Chen XB, Zhao GY, Kong XY, Jia JZ (2008) Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol 66(4):429–443

    Google Scholar 

  • Li J-H, Liu Y-Q, Lu P, Lin H-F, Bai Y, Wang X-C, Chen Y-L (2009) A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. Plant Physiol 150(1):114–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J (2012) HbCIPK2, a novel CBL interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ 35(9):1582–1600

    Article  CAS  PubMed  Google Scholar 

  • Li CL, Wang M, Wu X, Chen DH, Lv HJ, Shen JL, Qiao Z, Zhang W (2016) THI1, a thiamine thiazole synthase, interacts with Ca2+-dependent protein kinase CPK33 and modulates the S-type anion channels and stomatal closure in Arabidopsis. Plant Physiol 170(2):1090–1104

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280(5371):1943–1945

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Li GL, Chang H, Sun DY, Zhou RG, Li B (2007) Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 30(2):156–164

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG (2008) The calmodulin-binding protein kinase 3 is part of heat shock signal transduction in Arabidopsis thaliana. Plant J 55(5):760–773

    Article  CAS  PubMed  Google Scholar 

  • Loneragan JF, Snowball K (1969) Calcium requirements of plants. Aust J Agric Res 20(3):465–478

    Article  CAS  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and alcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14(Suppl 1):S389–S400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signalling pathways: specificity and cross talk. J Exp Bot 55(395):181–188

    Article  CAS  PubMed  Google Scholar 

  • Lynch T, Erickson BJ, Finkelstein RR (2012) Direct interactions of ABA-insensitive (ABI)-clade protein phosphatase (PP) 2Cs with calcium-dependent protein kinases and ABA response element binding bZIPs may contribute to turning off ABA response. Plant Mol Biol 80(6):647–658

    Article  CAS  PubMed  Google Scholar 

  • Ma SY, Wu WH (2007) AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65(4):511–518

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moe D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324(5930):1064–1068

    CAS  PubMed  Google Scholar 

  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56(4):575–589

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Mahajan SHILPI, Sopory SK, Tuteja NARENDRA (2006) CBL-CIPK paradigm: role in calcium and stress signaling in plants. Proc Indian Natl Sci Acad B Biol Sci 72(2):63

    CAS  Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London, pp 252–254

    Google Scholar 

  • Marschner P (2012) Rhizosphere biology. In: Marschner’s mineral nutrition of higher plants, 3rd edn, pp 369–388

    Google Scholar 

  • Marschner H (2012) In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, vol 89. Academic press, London

    Google Scholar 

  • Marten H, Konrad KR, Dietrich P, Roelfsema MRG, Hedrich R (2007) Ca2+-dependent and –independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum. Plant Physiol 143(1):28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436(7052):866

    Article  CAS  PubMed  Google Scholar 

  • McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+ signalling systems. Trends Plant Sci 3(1):32–36

    Article  Google Scholar 

  • McAinsh MR, Brownlee C, Hetherington AM (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343(6254):186

    Article  CAS  Google Scholar 

  • McAinsh MR, Webb AAR, Taylor JE, Hetherington AM (1995) Stimulus-induced oscillations in guard cell cytosolic-free calcium. Plant Cell 7(8):1207–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181(2):275–294

    Google Scholar 

  • Meer L, Mumtaz S, Labbo AM, Kha MJ, Sadiq I (2019) Genome-wide identification and expression analysis of calmodulin-binding transcription activator genes in banana under drought stress. Sci Hort 244:10–14

    Article  CAS  Google Scholar 

  • Melcher K, Xu Y, Ng LM, Zhou XE, Soon FF, Chinnusamy V, Suino-Powell KM, Kovach A, Tham FS, Cutler SR, Li J (2010) Identification and mechanism of ABA receptor antagonism. Nat Struct Mol Biol 17(9):1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25(3):295–303

    Article  CAS  PubMed  Google Scholar 

  • Milla MAR, Townsend J, Chang F, Cushman JC (2006) The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high salinity stress and light signaling pathways. Plant Mol Biol 61(1–2):13–30

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda N, Isono T, Sato MH (2003) Arabidopsis CAMTA family proteins enhance V-PPase expression in pollen. Plant Cell Physiol 44(10):975–981

    Article  CAS  PubMed  Google Scholar 

  • Moore CA, Bowen HC, Scrase-Field S, Knight MR, White PJ (2002) The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling. Plant J 30(4):457–465

    Article  CAS  PubMed  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135(2):702–708

    Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S type anion-and Ca2+-permeable channels and stomatal closure. PLoS Biol 4(10):e327

    Google Scholar 

  • Murata Y, Pei ZM, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD (P) H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13(11):2513–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata Y, Mori IC, Munemasa S (2015) Diverse stomatal signaling and the signal integration mechanism. Annu Rev Plant Biol 66:369–392

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress-response and seed development. Plant Cell Rep 32(7):959–970

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59(2):165–176

    Article  CAS  PubMed  Google Scholar 

  • Nelissen H, Clarke JH, De Block M, De Block S, Vanderhaeghen R, Zielinski RE, Dyer T, Lust S, Inze´ D, Van Lijsebettens M (2003) DRL1, a homolog of the yeast TOT4/KTI12 protein, has a function in meristem activity and organ growth in plants. Plant Cell 15(3):639–654

    Google Scholar 

  • Ng CKY, McAinsh MR (2003) Encoding specificity in plant calcium signalling: hot-spotting the ups and downs and waves. Ann Bot 92(4):477–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng LM, Soon FF, Zhou XE, West GM, Kovach A, Suino-Powell M, Chalmers MJ, Li J, Yong EL, Zhu JK, Griffin PR (2011) Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases. PNAS 108(52):21259–21264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura H, Shiina T (2014) Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. Mol Plant 7(7):1094–1104

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, Tanaka Y, Abrams SR, Kamiya Y, Seki M, Nambara E (2009) High humidity induces abscisic acid 8′ hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. Plant Physiol 149(2):825–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11(4):252

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Pandey GK, Cheong Y, Kim KN, Grant JJ, Li L, Hung W, D’Angel C, Weinl S, Kudla J, Luan S (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16(7):1912–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey GK, Grant JJ, Cheong YH, Kim BG, Luan S (2008) Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol 1(2):238–248

    Google Scholar 

  • Pandey N, Ranjan A, Pant P, Tripathi RK, Ateek F, Pandey HP, Patre U, Sawant SV (2013) CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genom 14(1):216

    Article  CAS  Google Scholar 

  • Pandey GK, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav AK, Tokas I, Sanyal S, Kim BG, Lee SC, Cheong YH (2015) CBL-interacting protein kinase, CIPK21, regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol 00623

    Google Scholar 

  • Pauly N, Knight MR, Thuleau P, van der Luit AH, Morea M, Trewavas AJ, Ranjeva R, Mazars C (2000) Control of free calcium in plant cell nuclei. Nature 405(6788):754

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406(6797):731

    Article  CAS  PubMed  Google Scholar 

  • Perez-Prat E, Narasimhan ML, Binzel ML, Botella A, Chen Z, Valpuesta V, Bressan RA, Hasegawa PM (1992) Induction of a putative calcium ATPase mRNA in sodium chloride adapted cells. Plant Physiol 100(3):1471–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pestacz A, Erdei L (1996) Calcium-dependent protein kinase in maize and sorghum induced by polyethylene glycol. Physiol Plant 97(2):360–364

    Article  Google Scholar 

  • Piao HL, Xuan Y, Park SH, Je BI, Park SJ, Park SH, Kim CM, Huang J, Wang GK, Kim MJ, Kang SM (2010) OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol Cell 30(1):19–27

    Article  CAS  Google Scholar 

  • Poovaiah BW, Reddy ASN, Leopold AC (1987) Calcium messenger system in plants. Crit Rev Plant Sci 6(1):47–103

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15(7):395–401

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra-Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202

    Article  PubMed  CAS  Google Scholar 

  • Ranf S, Wunnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53(2):287–299

    Article  CAS  PubMed  Google Scholar 

  • Ranty B, Aldon D, Cotelle V, Galaud JP, Thuleau P, Mazars C (2016) Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front Plant Sci 7:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy AS, Reddy VS, Golovkin M (2000) A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochem Biophys Res Commun 279(3):762–769

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Day IS, Narasimhulu SB, Safadi F, Reddy VS, Golovkin M, Harnly MJ (2002) Isolation and characterization of a novel calmodulin-binding protein from potato. J Biol Chem 277(6):4206–4214

    Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez‐Concepción M, Yalovsky S, Zik M, Fromm H, Gruissem W (1999) The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO J 18(7):1996–2007

    Google Scholar 

  • Rodriguez L, Gonzalez-Guzman M, Diaz M, Rodrigues A, Izquierdo-Garcia AC, Peirats-Llobet M, Fernandez MA, Antoni R, Fernandez D, Marquez JA, Mulet JM (2014) C2-domain abscisic acid related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis. Plant Cell 114

    Google Scholar 

  • Roelfsema MR, Hedrich R (2010) Making sense out of Ca2+ signals: their role in regulating stomatal movements. Plant Cell Environ 33(3):305–321

    Article  CAS  PubMed  Google Scholar 

  • Ronzier E, Corratgé-Faillie C, Sanchez F, Prado K, Brière C, Leonhardt N, Thibaud JB, Xiong TC (2014) CPK13, a non-canonical CPK, specifically inhibits KAT2 and KAT1 Shaker channels and reduces stomatal opening. Plant Physiol 114

    Google Scholar 

  • Rudd JJ, Franklin-Tong VE (2001) Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol 151(1):7–33

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+ dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23(3):319–327

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11(4):691–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14(Suppl 1):S401–S417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangwan V, Foulds I, Singh J, Dhindsa RJ (2001) Cold activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Sanyal SK, Pandey A, Pandey GK (2015) The CBL-CIPK signaling module in plants: a mechanistic perspective. Physiol Physiol Plant 155(2):89–108

    Article  CAS  PubMed  Google Scholar 

  • Scholz SS, Vadassery J, Heyer M, Reichelt M, Bender KW, Snedden WA, Boland W, Mithöfer A (2014) Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory. Mol Plant 7(12):1712–1726

    Article  CAS  PubMed  Google Scholar 

  • Scholz SS, Reichelt M, Vadassery J, Mithöfer A (2015) Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis. Plant Signal Behav 10(6):e1011951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Biol 52(1):627–658

    Article  CAS  Google Scholar 

  • Schuurink RC, Chan V, Jones RL (1996) Modulation of calmodulin mRNA and protein levels in barley aleurone. Plant Physiol 111(2):371–380

    Google Scholar 

  • Schwaller B (2012) The regulation of a cell’s Ca2+ signaling toolkit: the Ca2+ homeostasome. In: Calcium signaling. Springer, Dordrecht, pp 1–25

    Google Scholar 

  • Scrase-Field SA, Knight MR (2003) Calcium: just a chemical switch? Curr Opin Plant Biol 6(5):500–506

    Google Scholar 

  • Seifikalhor M, Aliniaeifard S, Shomali A, Azad N, Hassani B, Lastochkina O, Li T (2019) Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signal Behav 14:1665455

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shabala S, Wu H, Bose J (2015) Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis. Plant Sci 241:109–119

    Article  CAS  PubMed  Google Scholar 

  • Shacklock PS, Read ND, Trewavas AJ (1992) Cytosolic free calcium mediates red light-induced photomorphogenesis. Nature 358(6389):753

    Article  CAS  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274(5294):1900–1902

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Kim KN, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J (1999) Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell 11(12):393–2405

    Google Scholar 

  • Shi S, Li S, Asim M, Mao J, Xu D, Ullah Z, Liu G, Wang Q, Liu H (2018) The Arabidopsis calcium dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. Int J Mol Sci 19(7):1900

    Article  PubMed Central  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115(2):327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Siegel RS, Xue S, Murata Y, Yang Y, Nishimura N, Wang A, Schroeder JI (2009) Calcium elevation dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward rectifying K+ channels in Arabidopsis guard cells. Plant J 59(2):207–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simeunovic A, Mair A, Wurzinger B, Teige M (2016) Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. J Exp Bot 67(13):3855–3872

    Article  CAS  PubMed  Google Scholar 

  • Snedden WA, Fromm H (1998) Calmodulin, calmodulin related proteins and plant responses to the environment. Trends Plant Sci 3(8):299–304

    Article  Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151(1):35–66

    Article  CAS  PubMed  Google Scholar 

  • Song J, Zhao Q, Thao S, Frederick RO, Markley JL (2004) Letter to the editor: solution structure of a calmodulin-like calcium-binding domain from Arabidopsis thaliana. J Biomol NMR 30(4):451–456

    Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17(8):2384–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M (2012) Plant organellar calcium signalling: an emerging field. J Exp Bot 63(4):1525–1542

    Article  CAS  PubMed  Google Scholar 

  • Stange A, Hedrich R, Roelfsema MRG (2010) Ca2 + -dependent activation of guard cell anion channels, triggered by hyperpolarization, is promoted by prolonged depolarization. Plant J 62(2):265–276

    Article  CAS  PubMed  Google Scholar 

  • Staudinger C, Mehmeti-Tershani V, Gil-Quintana E, Gonzalez EM, Hofhansl F, Bachmann G, Wienkoop S (2016) Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. J Proteomics 136:202–213

    Article  CAS  PubMed  Google Scholar 

  • Staxén I, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. PNAS 96(4):1779–1784

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol 113

    Google Scholar 

  • Steinhorst L, Kudla J (2014) Signaling in cells and organisms—calcium holds the line. Curr Opin Plant Biol 22:14–21

    Article  CAS  PubMed  Google Scholar 

  • Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol 17(16):1396–1402

    Article  CAS  PubMed  Google Scholar 

  • Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Biol 51(1):433–462

    Article  CAS  Google Scholar 

  • Tai F, Wang Q, Yuan Z, Yuan Z, Li H, Wang W (2013) Characterization of five CIPK genes expressions in maize under water stress. Acta Physiol Plant 35(5):1555–1564

    Article  CAS  Google Scholar 

  • Tai F, Yuan Z, Li S, Wang Q, Liu F, Wang W (2015) ZmCIPK8, a CBL-interacting protein kinase, regulates maize response to drought stress. PCTOC 124(3):459–469

    Article  CAS  Google Scholar 

  • Tai F, Yuan Z, Li S, Wang Q, Liu F, Wang W (2016) ZmCIPK8, a CBL-interacting protein kinase, regulates maize response to drought stress. PCTOC 124(3):459–469

    Article  CAS  Google Scholar 

  • Takahashi Y, Kinoshita T, Shimazaki K (2007) Protein phosphorylation and binding of a 14-3-3 protein in Vicia guard cells in response to ABA. Plant Cell Physiol 48(8):1182–1191

    Article  CAS  PubMed  Google Scholar 

  • Thoday-Kennedy EL, Jacobs AK, Roy SJ (2015) The role of the CBL–CIPK calcium signaling network in regulating ion transport in response to abiotic stress. Plant Growth Regul 76(1):3–12

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50(1):571–599

    Article  CAS  Google Scholar 

  • Tirone F, Radu L, Craescu CT, Cox JA (2010) Identification of the binding site for the regulatory calcium-binding domain in the catalytic domain of NOX5. Biochemistry 49(4):761–771

    Google Scholar 

  • Trewavas A (1999) Le calcium, c’est la vie: calcium makes waves. Plant Physiol 120(1):1–6

    Google Scholar 

  • Tsou PL, Lee SY, Allen NS, Winter-Sederoff H, Robertson D (2012) An ER-targeted calcium binding peptide confers salt and drought tolerance mediated by CIPK6 in Arabidopsis. Planta 235(3):539–552

    Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2(2):79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotech 17(2):113–122

    Article  CAS  PubMed  Google Scholar 

  • Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K (1994) Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses Arabidopsis thaliana. MGG 244(4):331–340

    CAS  PubMed  Google Scholar 

  • Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mith€ofer A (2012) CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol 112

    Google Scholar 

  • Vanderbeld B, Snedden WA (2007) Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39. Plant Mol Biol 64(6):683–697

    Article  CAS  PubMed  Google Scholar 

  • Virdi AS, Singh S, Singh P (2015) Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Front Plant Sci 6:809

    Google Scholar 

  • Vivek PJ, Tuteja N, Soniya EV (2013) CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum. PLoS One 8(10):e76392

    Google Scholar 

  • Wan B, Lin Y, Mou T (2007) Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett 581(6):1179–1189

    Article  CAS  PubMed  Google Scholar 

  • Wan D, Li R, Zou B, Zhang X, Cong J, Wang R, Xia Y, Li G (2012) Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep 31(7):1269–1281

    Article  CAS  PubMed  Google Scholar 

  • Wang QY, Nick P (2001) Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid. Plant Cell Physiol 42(9):999–1005

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J (2009) Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathogens 5(2):e1000301

    Google Scholar 

  • Wang W-H, Yi X-Q, Han A-D, Liu T-W, Chen J, Wu F-H, Dong X-J, He J-X, Pei Z-M, Zheng H-L (2011) Calcium sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. J Exp Bot 63(1):177–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JP, Munyampundu JP, Xu YP, Cai Z (2015) Phylogeny of plant calcium and calmodulin dependent protein kinases (CCaMKs) and functional analyses of tomato CCaMK in disease resistance. Front Plant Sci 6:1075

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li T, John SJ, Chen M, Chang J, Yang G, He G (2018) A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. Plant Physiol Biochem 123:103–113

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Hu W, Deng X, Zhang Y, Liu X, Zhao X, Luo Q, Jin Z, Li Y, Zhou S, Sun T (2014) A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14(1):133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinl S, Held K, Schlücking K, Steinhorst L, Kuhlgert S, Hippler M, Kudla J (2008) A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol 179(3):675–686

    Article  CAS  PubMed  Google Scholar 

  • Weng H, Yoo CY, Gosney MJ, Hasegawa PM, Mickelbart MV (2012) Poplar GTL1 is a Ca2+/calmodulin binding transcription factor that functions in plant water use efficiency and drought tolerance. PLoS One 7(3):e32925

    Google Scholar 

  • Wheeler GL, Brownlee C (2008) Ca2+ signalling in plants and green algae–changing channels. Trends Plant Sci 13(9):506–514

    Article  CAS  PubMed  Google Scholar 

  • White PJ (1998) Calcium channels in the plasma membrane of root cells. Ann Bot 81(2):173–183

    Article  CAS  Google Scholar 

  • White PJ (2001) The pathways of calcium movement to the xylem. J Exp Bot 52(358):891–899

    Article  CAS  PubMed  Google Scholar 

  • White PJ (2009) Depolarization-activated calcium channels shape the calcium signatures induced by low temperature stress. New Phytol 183(1):6–8

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92(4):487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie T, Ren R, Zhang YY, Pang Y, Yan C, Gong X, He Y, Li W, Miao D, Hao Q, Deng H (2012) Molecular mechanism for inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2. 6, by protein phosphatase ABI1. J Biol Chem 287(1):794–802

    Google Scholar 

  • Xing T, Wang XJ, Malik K, Miki BL (2001) Ectopic expression of an Arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts. MPMI 14(10):1261–1264

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2001) Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112(2):152–166

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl 1):S165–S183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong TC, Bourque S, Lecourieux D, Amelot N, Grat S, Briere C, Mazars C, Pugin A, Ranjeva R (2006) Calcium signaling in plant cell organelles delimited by a double membrane. BBA-Mol Cell Res 1763(11):1209–1215

    CAS  Google Scholar 

  • Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, Gao F, Fu XY, Hou XL, Yao QH (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231(6):1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Xu GY, Roch PS, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234(1):47–59

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediate signal network in plants. Trends Plant Sci 8(10):505–512

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2000) An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. J Biol Chem 275(49):38467–38473

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277(47):45049–45058

    Article  CAS  PubMed  Google Scholar 

  • Yang WQ, Kong ZS, Omo-Ikerodah E, Xu WY, Li Q, Xue YB (2008) Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genom 35(9):531-S2

    Google Scholar 

  • Ye C-Y, Xia X, Yin W (2013) Evolutionary analysis of CBL-interacting protein kinase gene family in plants. Plant Growth Regul 71(1):49–56

    Article  CAS  Google Scholar 

  • Yildizli A, Çevik S, Ünyayar S (2018) Effects of exogenous myo-inositol on leaf water status and oxidative stress of Capsicum annuum under drought stress. Acta Physiol Plant 40(6):122

    Article  CAS  Google Scholar 

  • Yoo CY, Pence HE, Jin JB, Miura K, Gosney MJ, Hasegawa PM, Mickelbart MV (2010) The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell 110

    Google Scholar 

  • Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI (2006) CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. PNAS 103(19):7506–7511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Xia X, Yin W, Zhang H (2007) Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regul 52(2):101–110

    Article  CAS  Google Scholar 

  • Zhang H, Yang B, Liu WZ, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos M, Jiang YQ (2014) Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol 14(1):8

    Google Scholar 

  • Zhou L, Lan W, Chen B, Fang W, Luan S (2015a) A calcium sensor-regulated protein kinase CIPK19 is required for pollen tube growth and polarity1. Plant Physiol 114

    Google Scholar 

  • Zhou X, Hao H, Zhang Y, Bai Y, Zhu W, Qin Y, Yuan F, Zhao F, Wang M, Hu J, Xu H (2015b) PKS5/CIPK11, a SnRK3-type protein kinase, is important for ABA responses in Arabidopsis through phosphorylation of ABI5. Plant Physiol 114

    Google Scholar 

  • Zhu K, Chen F, Liu J, Chen X, Hewezi T, Cheng ZMM (2016) Evolution of an intron-poor cluster of the CIPK gene family and expression in response to drought stress in soybean. Sci Rep 6:28225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19(10):3019–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zielinski RE (1998) Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Biol 49(1):697–725

    Article  CAS  Google Scholar 

  • Zou JJ, Wei FJ, Wang C, Wu J, Ratnasekera D, Liu WX, Wu WH (2010) Arabidopsis calcium dependent protein kinase AtCPK10 functions in ABA and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol 110

    Google Scholar 

  • Zou JJ, Li XD, Ratnasekera D, Wang C, Liu WX, Song LF, Zhang WZ, Wu WH (2015) Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasan Aliniaeifard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aliniaeifard, S., Shomali, A., Seifikalhor, M., Lastochkina, O. (2020). Calcium Signaling in Plants Under Drought. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_10

Download citation

Publish with us

Policies and ethics