Skip to main content

Genetic Manipulation of Drought Stress Signaling Pathways in Plants

  • Chapter
  • First Online:
Salt and Drought Stress Tolerance in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Stress signaling networks in drought responses are composed of intracellular signaling systems, transcriptional regulatory complexes, and intercellular communication systems. The signaling mechanisms underlying changes in gene expression enable plant responses to drought stress. Signaling factors and transcription factors are themselves regulated transcriptionally and/or post-translationally (e.g., phosphorylation or proteolysis) in response to drought stress. Abscisic acid (ABA) is a key phytohormone, and ABA signaling is a major part of the drought response regulatory networks. However, ABA-independent pathways are also involved. The complexity and the cross talk between ABA-dependent and ABA-independent pathways in drought stress signaling networks have been extensively analyzed at the cellular level, but not at the intercellular level. Intercellular signaling in response to water deficit has to be elucidated for a comprehensive understanding of plant responses and adaptation to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    CAS  PubMed  Google Scholar 

  • Alvarez S, Roy Choudhury S, Pandey S (2014) Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J Proteome Res 13:1688–1701

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Ashraf U, Hussain S, Shahzad B, Khan I, Wang L (2016) Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environ Sci Pollut Res 23(17):17132–17141

    Article  CAS  Google Scholar 

  • Bray EA (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Ann Bot 89:803–811

    Article  CAS  Google Scholar 

  • Chandra Babu R, Jingxian Z, Blumc L, David-HHod T, Wue R, Nguyenf HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 151:196–1200

    Google Scholar 

  • Edae EA, Byrne PF, Manmathan H, Haley SD, Moragues M, Lopes MS et al (2013) Association mapping and nucleotide sequence variation in five drought tolerance candidate genes in spring wheat. Plant Genome 6:13

    Article  Google Scholar 

  • Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by Pto kinase. Plant Cell 12:771–786

    Article  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xaio B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  CAS  Google Scholar 

  • Huseynova I, Rustamova S (2010) Screening for drought stress tolerance in wheat genotypes using molecular markers. Biol Sci 65:132–139

    Google Scholar 

  • Hussain B, Khan AS, Ali Z (2015) Genetic variation in wheat germplasm for salinity tolerance at seedling stage: improved statistical inference. Turk J Agric For 39:182–192

    Article  CAS  Google Scholar 

  • Hussain M, Farooq S, Hasan W, Ul-Allah S, Tanveer M, Farooq M, Nawaz A (2018) Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agric Water Manag 201:152–166

    Article  Google Scholar 

  • Iehisa JCM, Matsuura T, Mori IC, Yokota H, Kobayashi F, Takumi S (2014) Identification of quantitative trait loci for abscisic acid responsiveness in the D-genome of hexaploid wheat. J Plant Physiol 171:830–841

    Article  CAS  Google Scholar 

  • Kulik A, Wawer I, Krzywin´ska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases–key regulators of plant response to abiotic stresses. OMICS 15:859–872

    Google Scholar 

  • Kuromori T, Mizoi J, Umezawa T, Yamaguchi-Shinozaki K, Shinozaki K (2014) Drought stress signaling network. Mol Biol 383–409

    Google Scholar 

  • Liang YK, Dubos C, Dodd IC, Holroyd GH, Hetherington AM, Campbell MM (2005) AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol 15:1201–1206

    Google Scholar 

  • Mondini L, Nachit M, Porceddu E, Pagnotta MA (2012) Identification of SNP mutations in DREB1, HKT1, and WRKY1 genes involved in drought and salt stress tolerance in durum wheat (Triticum turgidum L. var durum). OMICS 16:178–187

    Article  CAS  Google Scholar 

  • Mondini L, Nachit MM, Pagnotta MA (2015) Allelic variants in durum wheat (Triticum turgidum L. var. durum) DREB genes conferring tolerance to abiotic stresses. Mol Genet Genomics 290:531–544

    Article  CAS  Google Scholar 

  • Moose SP, Sisco PH (1996) Glossy15, an APETAL2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3027

    Article  CAS  Google Scholar 

  • Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1997) A nuclear gene, erd1, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J 12:851–861

    Article  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Van Mantagu M, Jofuku KD (1997) The AP2 domain of APETELA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  CAS  Google Scholar 

  • Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi- Shinozaki K, Shinozaki K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydratation process after dehydration using ca. 7000 full-length cDNA microarray. Plant J 34:868–887

    Article  CAS  Google Scholar 

  • Sasaki T, Song J, Koga-Ban Y et al (1994) Toward cataloguing all rice genes: large scale sequencing of randomly chosen rice cDNAs from a callus cDNA library. Plant J 6:615–624

    Article  CAS  Google Scholar 

  • Schafleitner R, Rosales ROG, Gaudin A, AliagaCAA MGN, Marca LRT, Bolivar LA, Delgado FM, Simon R, Bonierbale M (2007) Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiol Biochem 45:673–690

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, SakuraiT SM, Akiyama K, Taji T, YamaguchiShinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  Google Scholar 

  • Shelden MC, Roessner U (2013) Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front Plant Sci 4:123

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response tolerance. J Exp Bot 58:221–227

    Article  CAS  Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Khan EA (2018) 24-Epibrassinolide application in plants: an implication for improving drought stress tolerance in plants. Plant Physiol Biochem 135:295–303

    Article  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y et al (2007) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49:46–63

    Article  CAS  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, YamaguchiShinozaki K (2010) Molecular basis of the core regulatory network in abscisic acid responses: sensing, signaling, and transport. Plant Cell Physiol 51:1821–1839

    Article  CAS  Google Scholar 

  • Way H, Chapman S, McIntyre L, Casu R, Xue GP, Manners J, Shorter R (2005) Identification of differentially expressed genes in wheat undergoing gradual water deficit stress using a subtractive hybridisation approach. Plant Sci 168:661–670

    Article  CAS  Google Scholar 

  • Wei B, Jing R, Wang C, Chen J, Mao X, Chang X et al (2009) Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs. Mol Breed 23:13–22

    Article  CAS  Google Scholar 

  • Weigel D (1995) The APETELA2 domain is related to a novel type of DNA binding domain. Plant Cell 7:388–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Dreisigacker S, Melchinger AE, Reif JC, Mujeeb Kazi A, Van Ginkel M et al (2005) Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derived lines using SSR markers. Mol Breed 15:1–10

    Article  Google Scholar 

  • Zhang H, Mao X, Zhang J, Chang X, Jing R (2013) Single-nucleotide polymorphisms and association analysis of drought-resistance gene TaSnRK2.8 in common wheat. Plant Physiol Biochem 70:174–181

    Article  CAS  Google Scholar 

  • Zhou JM, Tang X, Martin GB (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J 16:3207–3218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Latif, S., Shah, T., Munsif, F., D’Amato, R. (2020). Genetic Manipulation of Drought Stress Signaling Pathways in Plants. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_15

Download citation

Publish with us

Policies and ethics