Skip to main content

An Overview of Salinity Tolerance Mechanism in Plants

  • Chapter
  • First Online:
Salt and Drought Stress Tolerance in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Salinity stress is a worldwide dilemma and salinity affected hectares of arable land is increasing inevitable particularly due to climate change. Developing salinity stress tolerance in plants is very complex because of the complex nature of salinity stress in plants. Previously, major focus regarding improving salinity stress tolerance in plants has been given to Na+ exclusion or Na+ compartmentalization, or enhanced antioxidant defense system and redox regulation. Moreover, ameliorative effects of different substance such as hormones, amino acids, nutrients, and organic osmolytes have also been extensively reported however still we are at our infancy stage in understanding salinity stress tolerance in plants. Exploring traits in wild genotype or particular in halophytes may help in finding better solutions. Therefore, in this book chapter, we have tried to discuss the role of few overlooked physiological mechanisms, which might be potential indicators of salinity stress tolerance in plants. Particularly, the role of potassium retention in leaf mesophyll, xylem ion loading, and potassium efflux as potential physiological mechanisms in regulating plant growth during salinity stress conditions has been discussed. Moreover, the role of cell wall lignification and potential role of jasmonic acid and ethylene has also been narrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alleva K, Niemitz CM, Maurl C, Parisi M, Tyeman SD, Amodeo G (2006) Plasma membrane of Beta vulgaris L. storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. J Exp Bot 7:609–621

    Article  CAS  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty K, Bose J, Shabala L, Shabala S (2016) Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. J Exp Bot 67:4611–4625

    Google Scholar 

  • Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi WG, Hilleary R, Swanson SJ, Kim SH, Gilroy S (2016) Rapid, long-distance electrical and calcium signaling in plants. Annu Rev Plant Biol 67:287–307

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V (2014) Mechanisms and physiological roles of K+ efflux from root cells. J plant Physiol 171(9):696–707

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Demidchik V, Shabala S (2018) Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated ‘ROS-Ca2+ Hub’. Funct Plant Biol 45(2):9–27

    Article  CAS  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123(9):1468–1479

    Article  CAS  PubMed  Google Scholar 

  • Deng XG, Zhu T, Zou LJ, Han XY, Zhou X, Xi DH, Zhang DW, Lin HH (2016) Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. Plant J 85(4):478–493

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Zhen Z, Peng J, Chang L, Gong Q, Wang NN (2011) Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J Exp Bot 62:4875–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong W, Wang M, Xu F, Quan T, Peng K, Xiao L, Xia G (2013) Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol 161:1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Claeys H, Broeck VDL, Inzé D (2017) Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought. Plant Cell Environ 40(2):180–189

    Article  CAS  PubMed  Google Scholar 

  • Elfving N, Davoine C, Benlloch R, Blomberg J, Brännström K, Müller D, Nilsson A, Ulfstedt M, Ronne H, Wingsle G, Nilsson O (2011) The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proc Natl Acad Sci USA 108:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etchells JP, Provost CM, Turner SR (2012) Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling. PLoS Genet 8:e1002997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J (2012) MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160:541–555

    Article  CAS  Google Scholar 

  • Fatnassi IC, Jebara SH, Jebara M (2011) Selection of symbiotic efficient and high salt-tolerant rhizobia strains by gamma irradiation. Ann Microbiol 61:291–297

    Article  CAS  Google Scholar 

  • Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2010) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62(6):2001–2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fonseca S, Calvo FP, Fernandez GM, Díaz DM, Ibanez GS, Vidriero LI, Godoy M, Barbero FG, Leene VJ, Jaeger DG, Zorrilla FJM (2014) bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses. PLoS ONE 9:e86182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930):442

    Article  CAS  PubMed  Google Scholar 

  • Gao QF, Gu LL, Wang HQ, Fei CF, Fang X, Hussain HJ, Sun SJ, Dong JY, Liu H, Wang YF (2016) Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc Natl Acad Sci USA 113(11):3096–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJ (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57(4):791–800

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Groen SC, Whiteman NK (2014) The evolution of ethylene signaling in plant chemical ecology. J Chem Ecol 40:700–716

    Article  CAS  PubMed  Google Scholar 

  • Kawano T, Kawano N, Muto S, Lapeyrie F (2001) Cation-induced superoxide generation in tobacco cell suspension culture is dependent on ion valence. Plant Cell Environ 24:1235–1241

    Article  CAS  Google Scholar 

  • Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S (2014) Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26(3):1069–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703

    Article  CAS  PubMed  Google Scholar 

  • Khan WUD, Aziz T, Warriach EA, Khalid M (2015) Silicon application improves germination and vegetative growth in maize grown under salt stress. Pak J Agric Sci 52(4):937–944

    Google Scholar 

  • Khan WUD, Aziz T, Hussain I, Ramzani PMA, Reichenauer TG (2017) Silicon: a beneficial nutrient for maize crop to enhance photochemical efficiency of photosystem II under salt stress. Arc Agron Soil Sci 63(5):599–611

    Article  CAS  Google Scholar 

  • Khan WUD, Aziz T, Maqsood MA, Farooq M, Ramzani PMA, Bilal HM (2018) Silicon nutrition improved salt resistance in maize by modulating ionic accumulation in plant organs and improving antioxidant enzymes and gas exchange parameters. Photosynthetica. https://doi.org/10.1007/s11099-018-0812-x

    Article  Google Scholar 

  • Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K (2009) The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21:2237–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarn S, Surange S, Nautiyal CS (2000) Crossing the limits of Rhizobium existence in extreme conditions. Curr Microbiol 41:402–409

    Article  Google Scholar 

  • Kumar K, Kumar M, Kim SR, Ryu H, Cho YG (2013) Insights into genomics of salt stress response in rice. Rice 6:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Reid DM (1997) The role of endogenous ethylene in the expansion of Helianthus annuus leaves. Can J Bot 75:501–508

    Article  CAS  PubMed  Google Scholar 

  • Li J, Pu L, Han M, Zhu M, Zhang R, Xiang Y (2014) Soil salinization research in China: advances and prospects. J Geogr Sci 24(5):943–960

    Article  Google Scholar 

  • Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu LH, Obermeyer G, Feijó JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332(6028):434–437

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19(2):335

    Google Scholar 

  • Lu M, Zhang Y, Tang S, Pan J, Yu Y, Han J, Li Y, Du X, Nan Z, Sun Q (2016) AtCNGC2 is involved in jasmonic acid-induced calcium mobilization. J Exp Bot 67:809–819

    Google Scholar 

  • Manzoor H, Kelloniemi J, Chiltz A, Wendehenne D, Pugin A, Poinssot B, Garcia-Brugger A (2013) Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis. Plant J 76:466–480

    Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Peer WA, Cheng Y, Murphy AS (2013) Evidence of oxidative attenuation of auxin signalling. J Exp Bot 64(9):2629–2639

    Article  CAS  PubMed  Google Scholar 

  • Percey WJ, Shabala L, Breadmore MC, Guijt RM, Bose J, Shabala S (2014) Ion transport in broad bean leaf mesophyll under saline conditions. Planta 240(4):729–743

    Article  CAS  PubMed  Google Scholar 

  • Percey WJ, Shabala L, Wu Q, Su N, Breadmore MC, Guijt RM, Bose J, Shabala S (2016) Potassium retention in leaf mesophyll as an element of salinity tissue tolerance in halophytes. Plant Physiol Biochem 109:346–354

    Google Scholar 

  • Poel BV, Straeten DVD (2014) 1-Aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front Plant Sci 5:640

    Google Scholar 

  • Potocký M, Jones MA, Bezvoda R, Smirnoff N, Zárský V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751

    Google Scholar 

  • Pottosin I, Dobrovinskaya O (2014) Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. J Plant Physiol 171(9):732–742

    Article  CAS  PubMed  Google Scholar 

  • Pottosin I, Buendía VAM, Bose J, Jazo ZI, Shabala S, Dobrovinskaya O (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J Exp Bot 65(5):1271–1283

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Guo J, Zhu A, Zhang L, Zhang M (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202–208

    Article  CAS  PubMed  Google Scholar 

  • Rao DLN, Giller KE, Yeo AR, Flowers TJ (2002) The effects of salinity and sodicity upon nodulation and nitrogen fixation in Chickpea (Cicer arietinum L.). Ann Bot 89:563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raz V, Koornneef M (2001) Cell division activity during apical hook development. Plant Physiol 125:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resnick JS, Wen CK, Shockey JA, Chang C (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA 103:7917–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rounds CM, Bezanilla M (2013) Growth mechanisms in tip-growing plant cells. Annu Rev Plant Biol 64:243–265

    Google Scholar 

  • Saqib M, Zörb C, Schubert S (2008) Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Funct Plant Biol 35(7):633–639

    Article  CAS  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187

    Article  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112(7):1209–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabala S (ed) (2017) Plant stress physiology. CABI

    Google Scholar 

  • Shabala S, Wu H, Bose J (2015) Salt stress sensing and early signaling events in plant roots: current knowledge and hypothesis. Plant Sci 241:109–119

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Wang Z, Song X, Xu J, Jiang C, Zhao Y, Ma C, Zhang H (2014) Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Mol Biol 86:303–317

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Drummond BJ, Wang H, Archibald RL, Habben JE (2016) Maize and Arabidopsis ARGOS proteins interact with ethylene receptor signaling complex, supporting a regulatory role for ARGOS in ethylene signal transduction. Plant Physiol 171:2783–2797

    Google Scholar 

  • Shin K, Lee S, Song WY, Lee RA, Lee I, Ha K, Koo JC, Park SK, Nam HG, Lee Y, Soh MS (2015) Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana. Plant Cell Physiol 56:572–582

    Google Scholar 

  • Song S, Qi T, Fan M, Zhang X, Gao H, Huang H, Wu D, Guo H, Xie D (2013) The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet 9:e1003653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki S, Ma JF, Yamamoto N, Hattori T, Sakamoto M, Umezawa T (2012) Silicon deficiency promotes lignin accumulation in rice. Plant Biotech 29(4):391–394

    Article  CAS  Google Scholar 

  • Tanveer M, Shabala S (2018) Targeting redox regulatory mechanisms for salinity stress tolerance in crops. In: Salinity responses and tolerance in plants, vol 1. Springer, Cham, pp 213–234

    Google Scholar 

  • Tanveer M, Shah AN (2017) An insight into salt stress tolerance mechanisms of Chenopodium album. Environ Sci Pollut R 24(19):16531–16535

    Article  CAS  Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Biju S, Bhardwaj R (2018) 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiol Biochem 130:69–79

    Article  CAS  Google Scholar 

  • Thomann A, Lechner E, Hansen M, Dumbliauskas E, Parmentier Y, Kieber J, Scheres B, Genschik P (2009) Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and-independent mechanisms. PLoS Genet 5:e1000328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toda Y, Tanaka M, Ogawa D, Kurata K, Kurotani KI, Habu Y, Ando T, Sugimoto K, Mitsuda N, Katoh E, Abe K (2013) RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. Plant Cell 25(5):1709–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YF, Munemasa S, Nishimura N, Ren HM, Robert N, Han M, Puzõrjova I, Kollist H, Lee S, Mori I, Schroeder JI (2013) Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells. Plant Physiol 163(2):578–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Chen ZH, Liu X, Colmer TD, Shabala L, Salih A, Zhou M, Shabala S (2016) Revealing the roles of GORK channels and NADPH oxidase in acclimation to hypoxia in Arabidopsis. J Exp Bot 68(12):3191–3204

    PubMed Central  Google Scholar 

  • Wasternack C (2014) Action of jasmonates in plant stress responses and development—applied aspects. Biotechnol Adv 32:31–39

    Article  CAS  PubMed  Google Scholar 

  • Wilkins KA, Matthus E, Swarbreck SM, Davies JM (2016) Calcium-mediated abiotic stress signaling in roots. Front Plant Sci 7:1296

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H, Ye H, Yao R, Zhang T, Xiong L (2015a) OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Sci 232:1–12

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhu M, Shabala L, Zhou M, Shabala S (2015b) K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley. J Integr Plant Biol 57(2):171–185

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66(10):2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Tang Y, Gao S, Su S, Hong L, Wang W, Fang Z, Li X, Ma J, Quan W, Sun H, Li X, Wang Y, Liao X, Gao J, Zhang F, Li L, Zhao C (2016) Comprehensive analyses of the annexin gene family in wheat. BMC Genomics 17:415

    Google Scholar 

  • Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D (2008) Activation of MAPK kinase 9 induces ethylene and camalex in biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283:26996–27006

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Du H, Tang N, Li X, Xiong L (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 71:291–305

    Article  CAS  PubMed  Google Scholar 

  • Yoon GM (2015) New insights into the protein turnover regulation in ethylene biosynthesis. Mol Cells 38:597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Dong W, Zhang N, Ai X, Wang M, Huang Z, Xiao L, Xia G (2014) A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol 164:1068–1076

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Yang N, Guo Z, Qian M, Gan L (2016) An ethylene and ROS-dependent pathway is involved in low ammonium-induced root hair elongation in Arabidopsis seedlings. Plant Physiol Bioch 105:37–44

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Tanveer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, WuD., Tanveer, M., Shaukat, R., Ali, M., Pirdad, F. (2020). An Overview of Salinity Tolerance Mechanism in Plants. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_1

Download citation

Publish with us

Policies and ethics