Skip to main content

Object Contour Refinement Using Instance Segmentation in Dental Images

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12002))

Abstract

A very accurate detection is required for fitting 3D dental model onto color images for tracking the milimetric displacement of each tooth along orthodontics treatment. Detecting the teeth boundaries with high accuracy on these images is a challenging task because of the various quality and high resolution of images. By training Mask R-CNN on a very large dataset of 170k images of patients’ mouth taken with different mobile devices, we have a reliable teeth instance segmentation, but each tooth boundaries are not accurate enough for dental care monitoring. To address this problem, we propose an efficient method for object contour refinement using instance segmentation (CRIS). Instance segmentation provides high-level information on the location and the shape of the object to guide and refine locally the contour detection process. We evaluate CRIS method on a large dataset of 600 dental images. Our method improves significantly the efficiency of several state-of-the-art contour detectors: Canny (+32.0% in ODS F-score), gPb (+17.8%), Sketch Tokens (+17.3%), Structured Edge (+12.2%), DeepContour (+15.5%), HED (+2.9%), CEDN (+2.2%), RCF (+2.2%) and also the best result (ODS F-score of 0.819). Our CRIS method can be used with any contour detection algorithms to refine object contours. In that way, this approach is promising for other applications requiring very accurate contour detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canny, J.: A computational approach to edge detection. PAMI 8(6), 679–698 (1986)

    Article  Google Scholar 

  2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33(5), 99–110 (2011)

    Article  Google Scholar 

  3. Lim, J.J., Zitnick, C.L., Dollar, P.: Sketch tokens: a learned mid-level representation for contour and object detection. In: CVPR (2013)

    Google Scholar 

  4. Dollar, P., Zitnick, C.L.: Fast edge detection using structured forests. PAMI 37(8), 1558–1570 (2015)

    Article  Google Scholar 

  5. Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, X.: DeepContour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: CVPR (2015)

    Google Scholar 

  6. Ganin, Y., Lempitsky, V.: N4-fields: neural network nearest neighbor fields for image transforms. arXiv preprint arXiv:1406.6558 (2014)

  7. Bertasius, G., Shi, J., Torresani, L.: DeepEdge: a multiscale bifurcated deep network for top-down contour detection. In: CVPR (2015)

    Google Scholar 

  8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  9. Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV, pp. 1395–1403 (2015)

    Google Scholar 

  10. Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.: Object contour detection with a fully convolutional encoder-decoder network. In: CVPR, pp. 193–202 (2016)

    Google Scholar 

  11. Liu, Y., Cheng, M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: CVPR, pp. 5872–5881 (2017)

    Google Scholar 

  12. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  13. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. In: SIGGRAPH (2004)

    Google Scholar 

  14. Said, E.H., Nassar, D.E.M., Fahmy, G., Ammar, H.H.: Teeth segmentation in digitized dental X-ray films using mathematical morphology. IEEE Trans. Inf. Forensics Secur. 1, 178–189 (2006)

    Article  Google Scholar 

  15. Shah, S., Abaza, A., Ross, A., Ammar, H.: Automatic tooth segmentation using active contour without edges. In: Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference (2006)

    Google Scholar 

  16. Na, S.D., Lee, G., Lee, J.H., Kim, M.N.: Individual tooth region segmentation using modified watershed algorithm with morphological characteristic. Bio Med. Mater. Eng. 24(6), 3303–3309 (2014)

    Article  Google Scholar 

  17. Ghaedi, L., et al.: An automated dental caries detection and scoring system for optical images of tooth occlusal surface. In: EMBC (2014)

    Google Scholar 

  18. Destrez, R., Albouy, A., Treuillet, S., Lucas, Y.: Automatic registration of 3D dental mesh based on photographs of patient’s mouth. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 7, 604–615 (2018)

    Article  Google Scholar 

  19. Abdelrahim, A.S., El-Melegy, M.T., Farag, A.A.: Realistic 3D reconstruction of the human teeth using shape from shading with shape priors. In: IEEE CVPRW (2012)

    Google Scholar 

  20. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  21. Eduardo, S.L.G., Oliveira, M.M.: Shared sampling for real-time alpha matting. Comput. Graph. Forum 29(2), 575–584 (2010)

    Article  Google Scholar 

  22. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  23. Everingham, M., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The Pascal visual object classes (VOC) challenge. IJVC 88(2), 303–338 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung Van Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Van Pham, T., Lucas, Y., Treuillet, S., Debraux, L. (2020). Object Contour Refinement Using Instance Segmentation in Dental Images. In: Blanc-Talon, J., Delmas, P., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2020. Lecture Notes in Computer Science(), vol 12002. Springer, Cham. https://doi.org/10.1007/978-3-030-40605-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40605-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40604-2

  • Online ISBN: 978-3-030-40605-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics