Skip to main content

Microbial Fuel Cell-Based Toxicity Sensor

  • Conference paper
  • First Online:
Automation 2020: Towards Industry of the Future (AUTOMATION 2020)

Abstract

The increase in energy consumption also increases the damage to the environment and the toxicity of water still is one of the main problems in the world. Microbial fuel cells (MFCs) are one of the alternative energy sources. The study demonstrates the possibility to use yeast as a probe to assess redox and electrophile-based toxicities and to extend the life of a MFCs. But as it is known, the quinones cause the oxidative stress of the cells. That is why the main aim of our research was to create a real-time biomonitoring system using MFCs to detect the concentration of quinones in solution, using one and two redox mediator’s systems. Atomic force microscopy (AFM) was used to analyse the topography of the modified and non-modified graphite electrode and Potentiostat/Galvanostat Autolab PGSTAT 30 was used for the electrochemical measurements, which results are described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du, Z., Li, H., Gu, T.: A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25, 464–482 (2007). https://doi.org/10.1016/j.biotechadv.2007.05.004

    Article  Google Scholar 

  2. Liu, H., Ramnarayanan, R., Logan, B.E.: Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281–2285 (2004). https://doi.org/10.1021/es034923g

    Article  Google Scholar 

  3. Hubenova, Y., Mitov, M.: Extracellular electron transfer in yeast-based biofuel cells: a review. Bioelectrochemistry 106, 177–185 (2015). https://doi.org/10.1016/j.bioelechem.2015.04.001

    Article  Google Scholar 

  4. Lei, Y., Chen, W., Mulchandani, A.: Microbial biosensors. Anal. Chim. Acta 568, 200–210 (2006)

    Article  Google Scholar 

  5. Bullen, R.A., Arnot, T.C., Lakeman, J.B., Walsh, F.C.: Biofuel cells and their development. Biosens. Bioelectron. 21, 2015–2045 (2006)

    Article  Google Scholar 

  6. Rodriguez, C.E., Shinyashiki, M., Froines, J., Yu, R.C., Fukuto, J.M., Cho, A.K.: An examination of quinone toxicity using the yeast Saccharomyces cerevisiae model system. Toxicology (2004). https://doi.org/10.1016/j.tox.2004.04.016

    Article  Google Scholar 

  7. Baronian, K.H.R.: The use of yeast and moulds as sensing elements in biosensors. Biosens. Bioelectron. 19, 953–962 (2004)

    Article  Google Scholar 

  8. Campanella, L., Favero, G., Mastrofini, D., Tomassetti, M.: Further developments in toxicity cell biosensors. Sens. Actuators B Chem. 44, 279–285 (1997)

    Article  Google Scholar 

  9. Hollis, R.P., Killham, K., Glover, L.A.: Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Appl. Environ. Microbiol. 66, 1676–1679 (2000)

    Article  Google Scholar 

  10. Stein, N.E., Hamelers, H.M.V., Van Straten, G., Keesman, K.J.: On-line detection of toxic components using a microbial fuel cell-based biosensor. J. Process Control 22, 1755–1761 (2012). https://doi.org/10.1016/j.jprocont.2012.07.009

    Article  Google Scholar 

  11. Jamieson, D.J.: Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14, 1511–1527 (1998)

    Article  Google Scholar 

  12. Breitenbach, M., Weber, M., Rinnerthaler, M., Karl, T., Breitenbach-Koller, L.: Oxidative stress in fungi: its function in signal transduction, interaction with plant hosts, and lignocellulose degradation. Biomolecules 5, 318–342 (2015)

    Article  Google Scholar 

  13. O’Brien, P.J.: Molecular mechanisms of quinone cytotoxicity. Chem. Biol. Interact. 80, 1–41 (1991)

    Article  Google Scholar 

  14. Kumagai, Y., Koide, S., Taguchi, K., Endo, A., Nakai, Y., Yoshikawa, T., Shimojo, N.: Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem. Res. Toxicol. 15, 483–489 (2002). https://doi.org/10.1021/tx0100993

    Article  Google Scholar 

  15. Bolton, J.L., Trush, M.A., Penning, T.M., Dryhurst, G., Monks, T.J.: Role of quinones in toxicology. Chem. Res. Toxicol. 13, 135–160 (2000)

    Article  Google Scholar 

  16. Morkvenaite-Vilkonciene, I, Ramanaviciene, A, Ramanavicius, A.: 9,10-Phenanthrenequinone as a redox mediator for the imaging of yeast cells by scanning electrochemical microscopy. Sens. Actuators B Chem. 228, 200–206 (2016). https://doi.org/10.1016/j.snb.2015.12.102

    Article  Google Scholar 

  17. Kisieliute, A., Popov, A., Apetrei, R.-M., Cârâc, G., Morkvenaite-Vilkonciene, I., Ramanaviciene, A., Ramanavicius, A.: Towards microbial biofuel cells: Improvement of charge transfer by self-modification of microorganisms with conducting polymer – Polypyrrole. Chem. Eng. J. 356, 1014–1021 (2019). https://doi.org/10.1016/J.CEJ.2018.09.026

    Article  Google Scholar 

  18. Rodriguez, C.E., Sobol, Z., Schiestl, R.H.: 9,10-Phenanthrenequinone induces DNA deletions and forward mutations via oxidative mechanisms in the yeast Saccharomyces cerevisiae. Toxicol. Vitro 22, 296–300 (2008)

    Article  Google Scholar 

  19. Allen, R.M., Bennetto, H.P.: Microbial fuel-cells: electricity production from carbohydrates. Appl. Biochem. Biotechnol. 39, 27–40 (1993)

    Article  Google Scholar 

  20. Hubenova, Y.V., Rashkov, R.S., Buchvarov, V.D., Arnaudova, M.H., Babanova, S.M., Mitov, M.Y.: Improvement of yeast − biofuel cell output by electrode modifications. Ind. Eng. Chem. Res. 50, 557–564 (2010)

    Article  Google Scholar 

  21. Morkvenaite-Vilkonciene, I., Ramanaviciene, A., Ramanavicius, A.: 9,10-Phenanthrenequinone as a redox mediator for the imaging of yeast cells by scanning electrochemical microscopy. Sens. Actuators B Chem. 228 (2016). https://doi.org/10.1016/j.snb.2015.12.102

    Article  Google Scholar 

Download references

Acknowledgments

This Research was funded by European Social Fund (Project No 09.3.3.-LMT-K-712-16-0211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juste Rozene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rozene, J., Zinovicius, A., Kacinskaite, B., Bučinskas, V., Ramanavicius, A., Morkvenaite-Vilkonciene, I. (2020). Microbial Fuel Cell-Based Toxicity Sensor. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2020: Towards Industry of the Future. AUTOMATION 2020. Advances in Intelligent Systems and Computing, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-40971-5_35

Download citation

Publish with us

Policies and ethics