Skip to main content

Continuous Wet Granulation

  • Chapter
  • First Online:
Continuous Pharmaceutical Processing

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 42))

  • 1637 Accesses

Abstract

Wet granulation is a critical unit operation in solid dosage form manufacturing in the pharmaceutical industry. Traditionally, wet granulation has been a batch process. Recently, there has been a move toward more advanced manufacturing approaches such as continuous processing to allow more rigorous process control, consistent quality assurance, and reduced capital costs. This chapter discusses continuous wet granulation process with emphasis on twin screw granulation as the most commonly used continuous granulation approach in the pharmaceutical industry. The key design features of a twin screw granulator (TSG) are described, and comparisons with batch high shear granulation equipment are made. The effects of formulation and process variables on granule attributes are discussed. Mechanistic studies of screw elements with the proposed granulation rate processes are presented. Real-time process monitoring tools, including spectroscopic and imaging techniques, are described. Implementation of dimensional analysis as a tool for scaling up/scaling out of continuous twin screw granulation is presented. Two numerical methods, that is, population balance model (PBM) and discrete element method (DEM), are chosen for the multiscale modeling of twin screw granulation, and their coupling mechanisms of data exchange between DEM and PBM are discussed.

The opinions and conclusions expressed in this chapter are solely the views of the authors and do not necessarily reflect those of the Food and Drug Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Particle radius, mm

b M :

Breakage function

B(v, t):

Birth rate, m−3 s−1

B agg :

Birth rate of agglomeration, m−3 s−1

B break :

Birth rate of breakage, m−3 s−1

B nuc :

Birth rate of nucleation, m−3 s−1

C impact :

Impact frequency, s−1

d p :

Particle diameter, mm

D :

Barrel diameter, mm

D(v, t):

Death rate, m−3 s−1

D break :

Death rate of breakage, m−3 s−1

\( {D}_{m_p,\kern0.28em \mathrm{nuc}} \) :

Death rate of powder particles, kg m−3 s−1

d 50 :

Median size of feed particle, mm

F n :

Series of geometric ratios

\( {F}_{\mathrm{powder}}^{\mathrm{in}} \) :

Flow rate of additional powder stream, kgs−1

G :

Growth rate, s−1

G m :

Maximum growth rate, s−1

G shear :

Shear rate, s−1

h :

Interparticle gap, mm

k :

Compaction rate constant, s−1

l :

Liquid volume, m3

L :

Barrel length, mm

\( {\dot{L}}_{\mathrm{in},\mathrm{powder}}\left(x,t\right) \) :

Rate of liquid addition to the fine powder, kgh−1

m :

Mass of particle, kg

M powder :

Mass of fine powder, kg

M granule :

Mass of granule, kg

\( {\dot{m}}_p \) :

Mass flow rate of powder, kg/h

\( {\dot{m}}_l \) :

Mass flow rate of liquid, kg/h

n :

Population density of length function, m−3

P 1 :

Rate coefficient

P 2 :

Size-dependent exponent

St v :

Stokes deformation number

V droplet :

Volume of a single liquid droplet, m3

V nuc :

Volume of particle in saturated granule, m3

V L, nuc :

Volume of liquid in saturated granule, m3

V p :

Per-particle pore volume, m3

S 1 :

Volume of solid component 1, m3

S 2 :

Volume of solid component 2, m3

SM(w, v):

Specific breakage rate, s−1

x w :

Moisture content of powder

x wc :

Critical moisture content of powder

∆x :

Reduction of particle size

σ:

Standard deviation

ω :

Angular velocity of the shaft, rads−1

ε :

Granule porosity

ε bed :

Powder bed porosity

εmin:

Minimum granule porosity

ρ b :

Particle density, kg m−3

u 0 :

Collision velocity, ms−1

μ :

Binder viscosity

LSR:

Liquid/solid ratio

PFN:

Powder feed number

Fr:

Froude number

References

  • Barrasso, D.: Multi-scale modeling of wet granulation process. PhD Thesis, Rutgers University, New Jersey. (2015).

    Google Scholar 

  • Barrasso D, Ramachandran R. Multi-scale modeling of granulation processes: bi-directional coupling of PBM with DEM via collision frequencies. Chem Eng Res Des. 2015;93:304–17.

    Article  CAS  Google Scholar 

  • Barrasso D, Ramachandran R. Qualitative assessment of a multi-scale, compartmental PBM-DEM model of a continuous twin-screw wet granulation process. J Pharm Innov. 2016;11:231–49.

    Article  Google Scholar 

  • Barrasso D, Tamrakar A, Ramachandran R. A reduced order PBM-ANN model of a multi-scale PBM-DEM description of a wet granulation process. Chem Eng Sci. 2014;119:319–29.

    Article  CAS  Google Scholar 

  • Barrasso D, El Hagrasy A, Litster JD, Ramachandran R. Multi-dimensional population balance model development and validation for a twin screw granulation process. Powder Technol. 2015a;270:612–21.

    Article  CAS  Google Scholar 

  • Barrasso D, Eppinger T, Pereira FE, Aglave R, Debus K, Bermingham SK, Ramachandran R. A multi-scale, mechanistic model of a wet granulation process using a novel bi-directional PBM-DEM coupling algorithm. Chem Eng Sci. 2015b;123:500–13.

    Article  CAS  Google Scholar 

  • Cameron IT, Wang FY, Immanuel CD, Stepanek F. Process systems modelling and applications in granulation: a review. Chem Eng Sci. 2005;60:3723–50.

    Article  CAS  Google Scholar 

  • Carvalho RM, Tavares LM. Dynamic modeling of comminution using a general microscale breakage model: Elsevier Inc; Amsterdam. 2009.

    Google Scholar 

  • Chablani L, Taylor MK, Mehrotra A, Rameas P, Stagner WC. Inline real-time near-infrared granule moisture measurements of a continuous granulation–drying–milling process. AAPS PharmSciTech. 2011;12:1050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Géotechnique. 1979;29:47–65.

    Article  Google Scholar 

  • Dhenge RM, Fyles RS, Cartwright JJ, Doughty DG, Hounslow MJ, Salman AD. Twin screw wet granulation: granule properties. Chem Eng J. 2010;164:322–9.

    Article  CAS  Google Scholar 

  • Dhenge RM, Cartwright JJ, Hounslow MJ, Salman AD. Twin screw wet granulation: effects of properties of granulation liquid. Powder Technol. 2012a;229:126–36.

    Article  CAS  Google Scholar 

  • Dhenge RM, Cartwright JJ, Hounslow MJ, Salman AD. Twin screw granulation: steps in granule growth. Int J Pharm. 2012b;438:20–32.

    Article  CAS  PubMed  Google Scholar 

  • Dhenge RM, Washino K, Cartwright JJ, Hounslow MJ, Salman AD. Twin screw granulation using conveying screws: effects of viscosity of granulation liquids and flow of powders. Powder Technol. 2013;238:77–90.

    Article  CAS  Google Scholar 

  • Djuric D, Kleinebudde P. Impact of screw elements on continuous granulation with a twin-screw extruder. J Pharm Sci. 2008;97:4934–42.

    Article  CAS  PubMed  Google Scholar 

  • Djuric D, Kleinebudde P. Continuous granulation with a twin-screw extruder: impact of material throughput. Pharm Dev Technol. 2010;15:518–25.

    Article  CAS  PubMed  Google Scholar 

  • Djuric D, Van Melkebeke B, Kleinebudde P, Remon JP, Vervaet C. Comparison of two twin-screw extruders for continuous granulation. Eur J Pharm Biopharm. 2009;71:155–60.

    Article  CAS  PubMed  Google Scholar 

  • El Hagrasy AS, Litster JD. Granulation rate processes in the kneading elements of a twin screw granulator. AICHE J. 2013;59:4100–15.

    Article  CAS  Google Scholar 

  • El Hagrasy AS, Hennenkamp JR, Burke MD, Cartwright JJ, Litster JD. Twin screw wet granulation: influence of formulation parameters on granule properties and growth behavior. Powder Technol. 2013a;238:108–15.

    Article  CAS  Google Scholar 

  • El Hagrasy AS, Cruise P, Jones I, Litster JD. In-line size monitoring of a twin screw granulation process using high-speed imaging. J Pharm Innov. 2013b;8:90–8.

    Article  Google Scholar 

  • Ennis BJ, Tardos G, Pfeffer R. A microlevel-based characterization of granulation phenomena. Powder Technol. 1991;65:257–72.

    Article  CAS  Google Scholar 

  • Fonteyne M, Vercruysse J, Díaz DC, Gildemyn D, Vervaet C, Remon JP, De Beer T. Real-time assessment of critical quality attributes of a continuous granulation process. Pharm Dev Technol. 2013;18:85–97.

    Article  CAS  PubMed  Google Scholar 

  • Fonteyne M, Arruabarrena J, de Beer J, Hellings M, Van Den Kerkhof T, Burggraeve A, Vervaet C, Remon JP, De Beer T. NIR spectroscopic method for the in-line moisture assessment during drying in a six-segmented fluid bed dryer of a continuous tablet production line: validation of quantifying abilities and uncertainty assessment. J Pharm Biomed Anal. 2014;100:21–7.

    Article  CAS  PubMed  Google Scholar 

  • Freireich B, Li J, Litster J, Wassgren C. Incorporating particle flow information from discrete element simulations in population balance models of mixer-coaters. Chem Eng Sci. 2011;66:3592–604.

    Article  CAS  Google Scholar 

  • Gao Y, Muzzio FJ, Ierapetritou MG. A review of the Residence Time Distribution (RTD) applications in solid unit operations. Powder Technol. 2012;228:416–23.

    Article  CAS  Google Scholar 

  • Hapgood KP, Litster JD, Smith R. Nucleation regime map for liquid bound granules. AICHE J. 2003;49:350–61.

    Article  CAS  Google Scholar 

  • Hapgood KP, Lveson SM, Litster JD, Liu LX. Granulation. Handb Powder Technol. 2007;11:897–977.

    Article  CAS  Google Scholar 

  • Hill PJ, Ng KM. New discretization procedure for the breakage equation. AICHE J. 1995;41:1204–16.

    Article  CAS  Google Scholar 

  • Hounslow MJ, Ryall RL, Marshall VR. A discretized population balance for nucleation, growth, and aggregation. AICHE J. 1988;34:1821–32.

    Article  CAS  Google Scholar 

  • Hounslow MJ, Pearson JMK, Instone T. Tracer studies of high-shear granulation: II. Population balance modeling. AIChE J. 2001;47:1984–99.

    Article  CAS  Google Scholar 

  • Iveson SM, Litster JD, Ennis BJ. Fundamental studies of granule consolidation Part 1: effects of binder content and binder viscosity. Powder Technol. 1996;88:15–20.

    Article  CAS  Google Scholar 

  • Keleb EI, Vermeire A, Vervaet C, Remon JP. Twin screw granulation as a simple and efficient tool for continuous wet granulation. Int J Pharm. 2004;273:183–94.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Vercruysse J, Toiviainen M, Panouillot PE, Juuti M, Vanhoorne V, Vervaet C, Remon JP, Gernaey KV, De Beer T, Nopens I. Mixing and transport during pharmaceutical twin-screw wet granulation: experimental analysis via chemical imaging. Eur J Pharm Biopharm. 2014;87:279–89.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Alakarjula M, Vanhoorne V, Toiviainen M, De Leersnyder F, Vercruysse J, Juuti M, Ketolainen J, Vervaet C, Remon JP, Gernaey KV, De Beer T, Nopens I. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: an experimental investigation. Eur J Pharm Sci. 2016;90:25–37.

    Article  CAS  PubMed  Google Scholar 

  • Lee KT, Ingram A, Rowson NA. Twin screw wet granulation: the study of a continuous twin screw granulator using Positron Emission Particle Tracking (PEPT) technique. Eur J Pharm Biopharm. 2012;81:666–73.

    Article  CAS  PubMed  Google Scholar 

  • Lee KF, Dosta M, Mcguire AD, Wagner W, Heinrich S, Kraft M, Street P, Street P. Development of a multi-compartment population balance model for high-shear wet granulation with Discrete Element Method New Museums Site. Comput Chem Eng. 2016;99:171–84.

    Article  CAS  Google Scholar 

  • Li H, Thompson MR, O’Donnell KP. Understanding wet granulation in the kneading block of twin screw extruders. Chem Eng Sci. 2014;113:11–21.

    Article  CAS  Google Scholar 

  • Litster JD, Ennis BJ. The science and engineering of granulation processes: Kluwer Academic; 2004.

    Google Scholar 

  • Liu Y, Thompson MR, O’Donnell KP. Function of upstream and downstream conveying elements in wet granulation processes within a twin screw extruder. Powder Technol. 2015;284:551–9.

    Article  CAS  Google Scholar 

  • Mu B, Thompson MR. Examining the mechanics of granulation with a hot melt binder in a twin-screw extruder. Chem Eng Sci. 2012;81:46–56.

    Article  CAS  Google Scholar 

  • Osorio J, et al. Scaling of continuous twin screw wet granulation. Am Inst Chem Eng. 2016;63:921–32.

    Article  CAS  Google Scholar 

  • Poon JM-H, Immanuel CD, Doyle FJ III, Litster JD. A three-dimensional population balance model of granulation with a mechanistic representation of the nucleation and aggregation phenomena. Chem Eng Sci. 2008;63:1315–29.

    Article  CAS  Google Scholar 

  • Pradhan SU, Sen M, Li J, Litster JD, Wassgren CR. Granule breakage in twin screw granulation: effect of material properties and screw element geometry. Powder Technol. 2017;315:290–9.

    Article  CAS  Google Scholar 

  • Randolph AD, Larson MA. Chapter 3 – the population balance. In: Theory of particulate processes; 1971, Elsevier, Amsterdam. p. 41–63.

    Google Scholar 

  • Saleh MF, Dhenge RM, Cartwright JJ, Hounslow MJ, Salman AD. Twin screw wet granulation: effect of process and formulation variables on powder caking during production. Int J Pharm. 2015;496:571–82.

    Article  CAS  PubMed  Google Scholar 

  • Sayin R. Mechanistic studies of twin screw granulation. PhD Thesis, Purdue University, Indiana. 2016.

    Google Scholar 

  • Sayin R, El Hagrasy AS, Litster JD. Distributive mixing elements: towards improved granule attributes from a twin screw granulation process. Chem Eng Sci. 2015a;125:165–75.

    Article  CAS  Google Scholar 

  • Sayin R, Martinez-Marcos L, Osorio JG, Cruise P, Jones I, Halbert GW, Lamprou DA, Litster JD. Investigation of an 11 mm diameter twin screw granulator: screw element performance and in-line monitoring via image analysis. Int J Pharm. 2015b;496:24–32.

    Article  CAS  PubMed  Google Scholar 

  • Seem TC, Rowson NA, Ingram A, Huang Z, Yu S, de Matas M, Gabbott I, Reynolds GK. Twin screw granulation – a literature review. Powder Technol. 2015;276:89–102.

    Google Scholar 

  • Tan MXL, Hapgood KP. Foam granulation: effects of formulation and process conditions on granule size distributions. Powder Technol. 2012;218:149–56.

    Article  CAS  Google Scholar 

  • Thiele W. Twin-screw extrusion and screw design. In Pharmaceutical Extrusion Technology (Chapter 4), Edited By Isaac Ghebre-Sellassie, Charles E. Martin, Feng Zhang, James DiNunzio, Taylor and Francis, London. 2003.

    Google Scholar 

  • Thompson MR. Twin screw granulation – review of current progress. Drug Dev Ind Pharm. 2015;41:1223–31.

    Article  CAS  PubMed  Google Scholar 

  • Thompson MR, Sun J. Wet granulation in a twin-screw extruder: implications of screw design. J Pharm Sci. 2010;99:2090–103.

    Article  CAS  PubMed  Google Scholar 

  • Van Melkebeke B, Vervaet C, Remon JP. Validation of a continuous granulation process using a twin-screw extruder. Int J Pharm. 2008;356:224–30.

    Article  PubMed  CAS  Google Scholar 

  • Vercruysse J, Toiviainen M, Fonteyne M, Helkimo N, Ketolainen J, Juuti M, Delaet U, Van Assche I, Remon JP, Vervaet C, De Beer T. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. Eur J Pharm Biopharm. 2014;86:383–92.

    Article  CAS  PubMed  Google Scholar 

  • Wang FY, Ge XY, Balliu N, Cameron IT. Optimal control and operation of drum granulation processes. Chem Eng Sci. 2006;61:257–67.

    Article  CAS  Google Scholar 

  • Wang MH, Yang RY, Yu AB. DEM investigation of energy distribution and particle breakage in tumbling ball mills. Powder Technol. 2012;223:83–91.

    Article  CAS  Google Scholar 

  • Zhu HP, Zhou ZY, Yang RY, Yu AB. Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci. 2007;62:3378–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Litster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Hagrasy, A., Wang, L.G., Litster, J. (2020). Continuous Wet Granulation. In: Nagy, Z., El Hagrasy, A., Litster, J. (eds) Continuous Pharmaceutical Processing. AAPS Advances in the Pharmaceutical Sciences Series, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-41524-2_8

Download citation

Publish with us

Policies and ethics