Skip to main content

Detoxifying Metabolism: Detoxification Enzymes

  • Chapter
  • First Online:
Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense

Abstract

Detoxification enzyme-catalyzed metabolism forms more hydrophilic and less reactive foreign compounds, thus facilitating their excretion from the body. Detoxification enzymes consist of conjugation and non-conjugation enzymes. Conjugation enzymes include uridine diphosphate-glucuronosyltransferase, glutathione S-transferases, sulfotransferase, N-acetyltransferase, methyltransferase, and acyltransferase, while non-conjugation detoxification enzymes are such as quinone reductase and epoxide hydrolases. A variety of functional groups or atoms of foreign compounds that are targets of detoxification enzyme-catalyzed reactions include phenol, sulfhydryl, polyphenol, carboxylic acid, amino acid, and epoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Arand M, Cronin A, Adamska M (2005) Oesch F. Epoxide hydrolases: structure, function, mechanism, and assay. Methods Enzymol 400:569-588.

    Article  CAS  Google Scholar 

  • Benson AM, Hunkeler MJ, Talalay P (1980) Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A 177:5216–5220

    Article  Google Scholar 

  • Chen CH (2012) Activation and detoxification enzymes: functions and implications. Springer, New York

    Book  Google Scholar 

  • Decker M, Arand M, Cronin A (2009) Mammalian epoxide hydrolases in xenobiotic metabolism and signalling. Arch Toxicol 83:297–318

    Article  CAS  Google Scholar 

  • Dekant W, Vamvakas S (1993) Glutathione-dependent bioactivation of xenobiotics. Xenobiotica 23:873–887

    Article  CAS  Google Scholar 

  • Evans D (1992) N-acetyltransferase. In: Kalow W (ed) Pharmacogenetics of drug metabolism. Pergamon, New York

    Google Scholar 

  • Fretland AJ, Omiecinski CJ (2000) Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact 129:41–59

    Article  CAS  Google Scholar 

  • Gamage N, Barnett A, Hempel N et al (2006) Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90:5–22

    Article  CAS  Google Scholar 

  • Grant DM, Blum M, Meyer UA (1992) Polymorphisms of N-acetyltransferase genes. Xenobiotica 9–10:1073–1081

    Article  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  CAS  Google Scholar 

  • Kato R, Yamazoe Y (1994) Metabolic activation of N-hydroxylated metabolites of carcinogenic and mutagenic arylamines and arylamides by esterification. Drug Metab Rev 26:413–429

    Article  CAS  Google Scholar 

  • King C, Rios G, Green M, Tephly T (2000) UDP-glucuronosyltransferases. Curr Drug Metab 1:143–161

    Article  CAS  Google Scholar 

  • Klaassen CD, Boles JW (1997) Sulfation and sulfotransferases 5: the importance of 3′- phosphoadenosine 5′-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J 11:404–418

    Article  CAS  Google Scholar 

  • Mannervik B (1988) Danielson UH. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem 23:283-337.

    Article  CAS  Google Scholar 

  • Meech R, Mackenzie PI (1997) Structure and function of uridine diphosphate glucuronosyl transferases. Clin Exp Pharmacol Physiol 24:907–915

    Article  CAS  Google Scholar 

  • Miners JO, Knights KM, Houston JB et al (2006) In vitro-in vivo correlation for drugs and other compounds eliminated by glucuronidation in humans: pitfalls and promises. Biochem Pharmacol 71:1531–1539

    Article  CAS  Google Scholar 

  • Negishi M, Pedersen LG, Petrotchenko E et al (2001) Structure and function of sulfotransferases. Arch Biochem Biophys 390:149–157

    Article  CAS  Google Scholar 

  • Rao PV, Krishna CM, Zigler JS Jr (1992) Identification and characterization of the enzymatic activity of zeta-crystallin from guinea pig lens. A novel NADPH:quinone oxidoreductase. J Biol Chem 267:96–102

    CAS  PubMed  Google Scholar 

  • Weinshilboum RM, Otterness DM, Szumlanski CL (1999) Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol 39:19–52

    Article  CAS  Google Scholar 

  • Wilce MC, Parker MW (1994) Structure and function of glutathione S-transferases. Biochim Biophys Acta 1205(1):1–18

    Article  CAS  Google Scholar 

  • Wildfang E, Zakharyan RA, Aposhian HV (1998) Enzymatic methylation of arsenic compounds. VI Characterization of hamster liver arsenite and methylarsonic acid methyltransferase activities in vitro. Toxicol Appl Pharmacol 152:366–375

    Article  CAS  Google Scholar 

  • Wood TC, Salavagionne OE, Mukherjee B et al (2006) Human arsenic methyltransferase (AS3MT) pharmacogenetics: gene resequencing and functional genomics studies. J Biol Chem 281:7364–7373

    Article  CAS  Google Scholar 

  • Talalay P (2000) Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors 12:5–11

    Article  CAS  Google Scholar 

  • Zakharyan RA, Wildfang E, Aposhian HV (1996) Enzymatic Methylation of Arsenic Compounds. Toxicol Appl Pharmacol 140:77–84

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, CH. (2020). Detoxifying Metabolism: Detoxification Enzymes. In: Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-41679-9_7

Download citation

Publish with us

Policies and ethics