Skip to main content

Inorganic Particles for Delivering Natural Products

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 44

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 44))

Abstract

Natural products are complex molecules that have been widely used in traditional medicine for therapeutics and diagnostics applications. Despite their long history of use, some challenges are associated with many natural product derived pharmaceuticals, like inadequate stability, poor absorption, distribution, metabolism and excretion. Medicinal chemists have been successful in addressing many of these challenges through structural modifications of the parent compound, but even so, analysis suggests that up to 20% of natural product leads are taken through unchanged as the final drug product. Even modified compounds are a challenge to administer, requiring the use of novel formulations and delivery strategies to enable the launch of an effective natural product derived drug into the market. To outwit these concerns, formulation of these natural product derived bioactive compounds using nanotechnology has been used as a potential tool in diagnostic and therapeutic applications. Compounds of organic or inorganic origin that are prepared from different metals, metal oxides, chitosan, sodium alginate, poly lactic acid, poly lactic co-glycolic acid, synthetic as well as natural origin polymers are amongst commonly used materials for development of natural product nanoformulations.

This book chapter deals in detail with the properties, synthesis, advantages and toxicity of inorganic particles like those of silver, gold, iron oxide and silica with the aim to shed light on the delivery of natural products for therapeutic and diagnostic purposes. Adjustable size and shape, large surface area, ease of functionalization and additional bioactivities associated with inorganic nanoparticles are some of the properties that give them an edge over other delivery methods. Apart from enhancing the stability of molecule, high-density surface ligands attachment enables the targeted delivery with enhanced therapeutic efficacy. Among the inorganic nanoparticles, metallic nanoparticles made up of silver or gold are increasingly being used for biomedical purposes because of their biocompatibility, versatility, broad antimicrobial activity as well as visible light extinction property. Silver and gold possesses peculiar properties such as Surface Plasmon Resonance associated which are not associated with other delivery vehicles like liposomes, dendrimers or micelles. Metal oxides such as Iron oxide (Fe2O3, Fe3O4) and silica (SiO2) with various surface modifications and as hybrid are now the popular choices for delivering natural products for a variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FDA:

Food and Drug Administration

MCM-41:

Mobil composition of matter no 41

PEG:

Polyethylene glycol

PEI:

Polyethylenimine

References

  • Abdellah AM, Sliem MA et al (2018) Green synthesis and biological activity of silver-curcumin nanoconjugates. Future Med Chem 10(22):2577–2588. https://doi.org/10.4155/fmc-2018-0152

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Bhardwaj A et al (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24(5A):2783–2840

    CAS  PubMed  Google Scholar 

  • Aghapour F, Moghadamnia AA et al (2018) Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem Biophys Res Commun 500(4):860–865. https://doi.org/10.1016/j.bbrc.2018.04.174

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Saifullah et al (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9(1):1–7

    Google Scholar 

  • Ali A, Zafar H et al (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67. https://doi.org/10.2147/NSA.S99986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameen F, AlYahya SA et al (2018) Flavonoid dihydromyricetin-mediated silver nanoparticles as potential nanomedicine for biomedical treatment of infections caused by opportunistic fungal pathogens. Res Chem Intermed 44(9):5063–5073

    CAS  Google Scholar 

  • Anand David AV, Arulmoli R et al (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10(20):84–89. https://doi.org/10.4103/0973-7847.194044

    Article  PubMed  PubMed Central  Google Scholar 

  • Ankamwar B, Chaudhary M et al (2005) Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Met Org Nano Met Chem 35(1):19–26. https://doi.org/10.1081/sim-200047527

    Article  CAS  Google Scholar 

  • Antony JJ, Sivalingam P et al (2015) Toxicological effects of silver nanoparticles. Environ Toxicol Pharmacol 40(3):729–732. https://doi.org/10.1016/j.etap.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  • Anuradha J, Abbasi T et al (2010) Green’ synthesis of gold nanoparticles with aqueous extracts of neem (Azadirachta indica). Res J Biotechnol 5(1):75–79

    CAS  Google Scholar 

  • Aromal SA, Philip D (2012) Benincasa hispida seed mediated green synthesis of gold nanoparticles and its optical nonlinearity. Physica E 44(7–8):1329–1334

    CAS  Google Scholar 

  • Arriagada F, Correa O et al (2016) Morin flavonoid adsorbed on mesoporous silica, a novel antioxidant nanomaterial. PLoS One 11(11):e0164507. https://doi.org/10.1371/journal.pone.0164507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arts JH, Muijser H et al (2007) Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Food Chem Toxicol 45(10):1856–1867

    CAS  PubMed  Google Scholar 

  • Athar M, Back JH et al (2007) Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 224(3):274–283. https://doi.org/10.1016/j.taap.2006.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attallah OA, Girgis E et al (2016) Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique. J Magn Magn Mater 399:58–63

    CAS  Google Scholar 

  • Baeza A, Colilla M et al (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12(2):319–337. https://doi.org/10.1517/17425247.2014.953051

    Article  CAS  PubMed  Google Scholar 

  • Bagherzade G, Tavakoli MM et al (2017) Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed 7(3):227–233

    Google Scholar 

  • Bagwe RP, Hilliard LR et al (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9):4357–4362. https://doi.org/10.1021/la052797j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahadur A, Saeed A et al (2017) Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: dielectric, magnetic, thermal and optical studies. Mater Chem Phys 198:229–235

    CAS  Google Scholar 

  • Balakrishnan S, Bhat FA et al (2016) Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 49(6):678–697. https://doi.org/10.1111/cpr.12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banoee M, Mokhtari N et al (2010) The green synthesis of gold nanoparticles using the ethanol extract of black tea and its tannin free fraction. Iran J Mater Sci Eng 7(1):48–53

    CAS  Google Scholar 

  • Bastus NG, Comenge J et al (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27(17):11098–11105. https://doi.org/10.1021/la201938u

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Srivastava A (2003) Synthesis of gold nanoparticles stabilised by metal-chelator and the controlled formation of close-packed aggregates by them. J Chem Sci 115(5–6):613–619

    CAS  Google Scholar 

  • Bouwmeester H, Poortman J et al (2011) Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5(5):4091–4103. https://doi.org/10.1021/nn2007145

    Article  CAS  PubMed  Google Scholar 

  • Brown PK, Qureshi AT et al (2013) Silver nanoscale antisense drug delivery system for photoactivated gene silencing. ACS Nano 7(4):2948–2959. https://doi.org/10.1021/nn304868y

    Article  CAS  PubMed  Google Scholar 

  • Brunner TJ, Stark WJ, et al (2009) Nanoscale bioactive silicate glasses in biomedical applications Preface XV List of Contributors XIX

    Google Scholar 

  • Buazar F, Baghlani-Nejazd MH et al (2016) Facile one-pot phytosynthesis of magnetic nanoparticles using potato extract and their catalytic activity. Starch-Stärke 68(7–8):796–804

    CAS  Google Scholar 

  • Bulte JW (2009) In vivo MRI cell tracking: clinical studies. Am J Roentgenol 193(2):314–325

    Google Scholar 

  • Cai Q, Luo Z-S et al (2001) Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem Mater 13(2):258–263

    CAS  Google Scholar 

  • Cao S, Zhu H (2014) Frontiers in biomaterials: the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application. Bentham Science Publishers, Oak Park

    Google Scholar 

  • Castillo PM, de la Mata M et al (2014) PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system. Beilstein J Nanotechnol 5:1312–1319. https://doi.org/10.3762/bjnano.5.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catauro M, Papale F et al (2015) Silica/quercetin sol-gel hybrids as antioxidant dental implant materials. Sci Technol Adv Mater 16(3):035001. https://doi.org/10.1088/1468-6996/16/3/035001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalal M, Klinguer A et al (2014) Antimicrobial activity of resveratrol analogues. Molecules 19(6):7679–7688. https://doi.org/10.3390/molecules19067679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YS, Hung YC et al (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4(8):858–864. https://doi.org/10.1007/s11671-009-9334-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Liu J et al (2018) The toxicity of silica nanoparticles to the immune system. Nanomedicine (Lond) 13(15):1939–1962

    Google Scholar 

  • Cho WS, Cho M et al (2009a) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236(1):16–24. https://doi.org/10.1016/j.taap.2008.12.023

    Article  CAS  PubMed  Google Scholar 

  • Cho WS, Kim S et al (2009b) Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett 191(1):96–102. https://doi.org/10.1016/j.toxlet.2009.08.010

    Article  CAS  PubMed  Google Scholar 

  • Connor EE, Mwamuka J et al (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327. https://doi.org/10.1002/smll.200400093

    Article  CAS  PubMed  Google Scholar 

  • Daisy P, Saipriya K (2012) Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine 7:1189–1202. https://doi.org/10.2147/IJN.S26650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D'Andrea G (2015) Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia 106:256–271. https://doi.org/10.1016/j.fitote.2015.09.018

    Article  CAS  PubMed  Google Scholar 

  • Das VL, Thomas R et al (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4(2):121–126

    PubMed  Google Scholar 

  • De Jong WH, Hagens WI et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12):1912–1919. https://doi.org/10.1016/j.biomaterials.2007.12.037

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira LF, Bouchmella K et al (2016) Functionalized silica nanoparticles as an alternative platform for targeted drug-delivery of water insoluble drugs. Langmuir 32(13):3217–3225. https://doi.org/10.1021/acs.langmuir.6b00214

    Article  CAS  PubMed  Google Scholar 

  • Demir A, Topkaya R et al (2013) Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: its magnetic investigation. Polyhedron 65:282–287

    CAS  Google Scholar 

  • Ebrahimpour S, Esmaeili A et al (2018) Effect of quercetin-conjugated superparamagnetic iron oxide nanoparticles on diabetes-induced learning and memory impairment in rats. Int J Nanomedicine 13:6311–6324. https://doi.org/10.2147/IJN.S177871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edison TJI, Sethuraman M (2012) Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 47(9):1351–1357

    CAS  Google Scholar 

  • El Mahdy MM, Eldin TA et al (2015) Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Exp Toxicol Pathol 67(1):21–29. https://doi.org/10.1016/j.etp.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  • El-Kassas HY, Aly-Eldeen MA et al (2016) Green synthesis of iron oxide (Fe 3 O 4) nanoparticles using two selected brown seaweeds: characterization and application for lead bioremediation. Acta Oceanol Sin 35(8):89–98

    CAS  Google Scholar 

  • Enteshari Najafabadi R, Kazemipour N et al (2018) Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain. BMC Pharmacol Toxicol 19(1):59. https://doi.org/10.1186/s40360-018-0249-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Zhang S et al (2018) Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int J Nanomedicine 13:5113–5126. https://doi.org/10.2147/IJN.S170862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Q, Liu Y et al (2018) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8(1):2082. https://doi.org/10.1038/s41598-018-19628-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Fernandez A, Manchanda R et al (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 165(7–8):1628–1651. https://doi.org/10.1007/s12010-011-9383-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franci G, Falanga A et al (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874. https://doi.org/10.3390/molecules20058856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganeshpurkar A, Saluja AK (2017) The pharmacological potential of Rutin. Saudi Pharm J 25(2):149–164. https://doi.org/10.1016/j.jsps.2016.04.025

    Article  PubMed  Google Scholar 

  • Gao S, Shi Y et al (2008) Biopolymer-assisted green synthesis of iron oxide nanoparticles and their magnetic properties. J Phys Chem C 112(28):10398–10401

    CAS  Google Scholar 

  • Garg S, Garg A (2018) Encapsulation of curcumin in silver nanoparticle for enhancement of anticancer drug delivery. Int J Pharm Sci Res 9(3):1160–1166

    CAS  Google Scholar 

  • Ge F, Li M-M et al (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211:366–372

    PubMed  Google Scholar 

  • Ghosh D, Konishi T (2007) Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 16(2):200–208

    CAS  PubMed  Google Scholar 

  • Gibson JD, Khanal BP et al (2007) Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 129(37):11653–11661. https://doi.org/10.1021/ja075181k

    Article  CAS  PubMed  Google Scholar 

  • Glavee GN, Klabunde KJ et al (1995) Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg Chem 34(1):28–35

    CAS  Google Scholar 

  • Go M-R, Bae S-H et al (2017) Interactions between food additive silica nanoparticles and food matrices. Front Microbiol 8:1013

    PubMed  PubMed Central  Google Scholar 

  • Gokduman K, Bestepe F et al (2018) Dose-, treatment- and time-dependent toxicity of superparamagnetic iron oxide nanoparticles on primary rat hepatocytes. Nanomedicine (Lond) 13(11):1267–1284. https://doi.org/10.2217/nnm-2017-0387

    Article  CAS  Google Scholar 

  • Gonçalves M (2018) Sol-gel silica nanoparticles in medicine: a natural choice. Design, synthesis and products. Molecules 23(8):2021

    PubMed Central  Google Scholar 

  • Gopal JV (2013) Morin hydrate: botanical origin, pharmacological activity and its applications: a mini-review. Pharm J 5(3):123–126

    Google Scholar 

  • Govindasamy C, Alnumair KS et al (2014) GW25-e5392 Morin, a flavonoid, on lipid peroxidation and antioxidant status in experimental myocardial ischemic rats. J Am Coll Cardiol 64(16 Supplement):C56

    Google Scholar 

  • Gul A, Kunwar B et al (2018) Rutin and rutin-conjugated gold nanoparticles ameliorate collagen-induced arthritis in rats through inhibition of NF-kappaB and iNOS activation. Int Immunopharmacol 59:310–317. https://doi.org/10.1016/j.intimp.2018.04.017

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Huang Q et al (2001) Iron nanoparticles: synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Phys Chem Chem Phys 3(9):1661–1665. https://doi.org/10.1039/b009951l

    Article  CAS  Google Scholar 

  • Gupta SC, Kim JH et al (2010) Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29(3):405–434. https://doi.org/10.1007/s10555-010-9235-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver–a review. Regul Toxicol Pharmacol 68(1):1–7. https://doi.org/10.1016/j.yrtph.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  • Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72

    CAS  Google Scholar 

  • Heo DN, Yang DH et al (2012) Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials 33(3):856–866. https://doi.org/10.1016/j.biomaterials.2011.09.064

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi H, Yamamoto N et al (2014) A phase 1 study of linifanib in combination with carboplatin/paclitaxel as first-line treatment of Japanese patients with advanced or metastatic non-small cell lung cancer (NSCLC). Cancer Chemother Pharmacol 74(1):37–43. https://doi.org/10.1007/s00280-014-2478-9

    Article  CAS  PubMed  Google Scholar 

  • Horst MF, Coral DF et al (2017) Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments. Mater Sci Eng C Mater Biol Appl 74:443–450. https://doi.org/10.1016/j.msec.2016.12.035

    Article  CAS  PubMed  Google Scholar 

  • Hua MY, Yang HW et al (2010) Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 31(28):7355–7363. https://doi.org/10.1016/j.biomaterials.2010.05.061

    Article  CAS  PubMed  Google Scholar 

  • Huang DM, Chung TH et al (2008) Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol Appl Pharmacol 231(2):208–215. https://doi.org/10.1016/j.taap.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  • Hudson SP, Padera RF et al (2008) The biocompatibility of mesoporous silicates. Biomaterials 29(30):4045–4055. https://doi.org/10.1016/j.biomaterials.2008.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwu JR, Lin YS et al (2009) Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc 131(1):66–68. https://doi.org/10.1021/ja804947u

    Article  CAS  PubMed  Google Scholar 

  • Iglesias CV, Aparicio R et al (2005) Effects of morin on snake venom phospholipase A2 (PLA2). Toxicon 46(7):751–758. https://doi.org/10.1016/j.toxicon.2005.07.017

    Article  CAS  PubMed  Google Scholar 

  • Ignatowicz E, Baer-Dubowska W (2001) Resveratrol, a natural chemopreventive agent against degenerative diseases. Pol J Pharmacol 53(6):557–569

    CAS  PubMed  Google Scholar 

  • Ikari K, Suzuki K et al (2006) Structural control of mesoporous silica nanoparticles in a binary surfactant system. Langmuir 22(2):802–806

    CAS  PubMed  Google Scholar 

  • Iravani S, Korbekandi H et al (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal S, Mishra P (2018) Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med Microbiol Immunol 207(1):39–53. https://doi.org/10.1007/s00430-017-0525-y

    Article  CAS  PubMed  Google Scholar 

  • Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4(4):253–265. https://doi.org/10.1038/nrc1317

    Article  CAS  PubMed  Google Scholar 

  • Jurkić LM, Cepanec I et al (2013) Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: new perspectives for therapy. Nutr Metab 10(1):2

    Google Scholar 

  • Kajani AA, Zarkesh-Esfahani SH et al (2016) Anticancer effects of silver nanoparticles encapsulated by Taxus baccata extracts. J Mol Liq 223:549–556

    CAS  Google Scholar 

  • Kang S, Hong SI et al (2001) Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer 42(3):879–887

    CAS  Google Scholar 

  • Kasaai MR (2015) Nanosized particles of silica and its derivatives for applications in various branches of food and nutrition sectors. J Nanotechnol 2015:1–6. https://doi.org/10.1155/2015/852394

  • Kasthuri J, Kathiravan K et al (2009a) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11(5):1075–1085

    CAS  Google Scholar 

  • Kasthuri J, Veerapandian S et al (2009b) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B: Biointerfaces 68(1):55–60. https://doi.org/10.1016/j.colsurfb.2008.09.021

    Article  CAS  PubMed  Google Scholar 

  • Kerekes L, Hakl J et al (2002) Study of magnetic relaxation in partially oxidized nanocrystalline iron. Czechoslov J Phys 52(1):A89–A92

    CAS  Google Scholar 

  • Khan M, Khan M et al (2013) Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. Int J Nanomedicine 8:1507–1516. https://doi.org/10.2147/IJN.S43309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan M, Khan ST et al (2014) Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant. Int J Nanomedicine 9:3551–3565. https://doi.org/10.2147/IJN.S61983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandelwal P, Alam A et al (2018) Retention of anticancer activity of curcumin after conjugation with fluorescent gold quantum clusters: an in vitro and in vivo xenograft study. ACS Omega 3(5):4776–4785. https://doi.org/10.1021/acsomega.8b00113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khataee A, Kayan B et al (2017) Ultrasound-assisted removal of Acid Red 17 using nanosized Fe3O4-loaded coffee waste hydrochar. Ultrason Sonochem 35(Pt A):72–80. https://doi.org/10.1016/j.ultsonch.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim JH et al (2009) Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology 20(50):505101. https://doi.org/10.1088/0957-4484/20/50/505101

    Article  CAS  PubMed  Google Scholar 

  • Kim I-Y, Joachim E et al (2015) Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine 11(6):1407–1416

    CAS  PubMed  Google Scholar 

  • Kim MJ, Rehman SU et al (2017) Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Abeta1-42-induced neuroinflammation and neurodegeneration via the NF-KB /JNK/GSK3beta signaling pathway. Nanomedicine (Lond) 13(8):2533–2544. https://doi.org/10.1016/j.nano.2017.06.022

    Article  CAS  Google Scholar 

  • Kittler S, Greulich C et al (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554. https://doi.org/10.1021/cm100023p

    Article  CAS  Google Scholar 

  • Klabunde KJ, Stark J et al (1996) Nanocrystals as stoichiometric reagents with unique surface chemistry. J Phys Chem 100(30):12142–12153

    CAS  Google Scholar 

  • Klejbor I, Stachowiak EK et al (2007) ORMOSIL nanoparticles as a non-viral gene delivery vector for modeling polyglutamine induced brain pathology. J Neurosci Methods 165(2):230–243. https://doi.org/10.1016/j.jneumeth.2007.06.011

    Article  CAS  PubMed  Google Scholar 

  • Kobler J, Bein T (2008) Porous thin films of functionalized mesoporous silica nanoparticles. ACS Nano 2(11):2324–2330

    CAS  PubMed  Google Scholar 

  • Kouvaris P, Delimitis A et al (2012) Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract. Mater Lett 76:18–20

    CAS  Google Scholar 

  • Koźlecki T, Polowczyk I et al (2016) Improved synthesis of nanosized silica in water-in-oil microemulsions. J Nanopart 2016:1–9

    Google Scholar 

  • Kumar A, Pandey AK et al (2011) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83(8):1124–1132. https://doi.org/10.1016/j.chemosphere.2011.01.025

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ma H et al (2012) Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 33(4):1180–1189. https://doi.org/10.1016/j.biomaterials.2011.10.058

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Smita K et al (2016) Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Mater Chem Phys 179:310–315

    CAS  Google Scholar 

  • Kyung OY, Grabinski CM et al (2009) Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res 11(1):15–24

    Google Scholar 

  • Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10(3):339–354

    Google Scholar 

  • Lee J, Shin YK et al (2014) Protective mechanism of morin against ultraviolet B-induced cellular senescence in human keratinocyte stem cells. Int J Radiat Biol 90(1):20–28. https://doi.org/10.3109/09553002.2013.835502

    Article  CAS  PubMed  Google Scholar 

  • Li F, Vipulanandan C et al (2003) Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids Surf A Physicochem Eng Asp 223(1–3):103–112

    CAS  Google Scholar 

  • Li S, Shen Y et al (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9(8):852–858

    CAS  Google Scholar 

  • Li Y, Guo M et al (2016) Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int J Nanomedicine 11:6693–6702. https://doi.org/10.2147/IJN.S122666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Li S et al (2017) Green synthesis of β-CD-functionalized monodispersed silver nanoparticles with ehanced catalytic activity. Colloids Surf A Physicochem Eng Asp 520:26–31

    CAS  Google Scholar 

  • Lide DR (2004) CRC handbook of chemistry and physics. CRC press, Boca Raton

    Google Scholar 

  • Lipka J, Semmler-Behnke M et al (2010) Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 31(25):6574–6581. https://doi.org/10.1016/j.biomaterials.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Han MY (2010) Silica-coated metal nanoparticles. Chem Asian J 5(1):36–45

    CAS  PubMed  Google Scholar 

  • Liu Y, Guo Y et al (2011) A sustainable route for the preparation of activated carbon and silica from rice husk ash. J Hazard Mater 186(2–3):1314–1319

    CAS  PubMed  Google Scholar 

  • Liu Y, He M et al (2015) Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency. Int J Nanomedicine 10:3081–3095. https://doi.org/10.2147/IJN.S79550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeschner K, Hadrup N et al (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18. https://doi.org/10.1186/1743-8977-8-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Liong M et al (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6(16):1794–1805. https://doi.org/10.1002/smll.201000538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Qian J et al (2011) In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int J Nanomedicine 6:1889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luborsky F, Paine T (1960) Angular variation of the magnetic properties of elongated single-domain iron particles. J Appl Phys 31(5):S66–S68

    Google Scholar 

  • Lugert S, Unterweger H et al (2019) Cellular effects of paclitaxel-loaded iron oxide nanoparticles on breast cancer using different 2D and 3D cell culture models. Int J Nanomedicine 14:161–180. https://doi.org/10.2147/IJN.S187886

    Article  CAS  PubMed  Google Scholar 

  • Lührs A-K, Geurtsen W (2009) The application of silicon and silicates in dentistry: a review. In: Biosilica in evolution, morphogenesis, and nanobiotechnology. Springer, Heidelberg, pp 359–380

    Google Scholar 

  • Lunge S, Singh S et al (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31

    CAS  Google Scholar 

  • Martino A, Stoker M et al (1997) The synthesis and characterization of iron colloid catalysts in inverse micelle solutions. Appl Catal A Gen 161(1–2):235–248

    CAS  Google Scholar 

  • Matsoukas T, Gulari E (1988) Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. J Colloid Interface Sci 124(1):252–261

    CAS  Google Scholar 

  • Mattos BD, Tardy BL et al (2018) Controlled biocide release from hierarchically-structured biogenic silica: surface chemistry to tune release rate and responsiveness. Sci Rep 8(1):5555. https://doi.org/10.1038/s41598-018-23921-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melendez-Rodriguez B, Figueroa-Lopez KJ et al (2019) Electrospun antimicrobial films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles. Nanomaterials (Basel) 9(2). https://doi.org/10.3390/nano9020227

  • Mioc M, Pavel IZ et al (2018) The cytotoxic effects of betulin-conjugated gold nanoparticles as stable formulations in Normal and melanoma cells. Front Pharmacol 9:429. https://doi.org/10.3389/fphar.2018.00429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal AK, Bhaumik J et al (2014) Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J Colloid Interface Sci 415:39–47

    CAS  PubMed  Google Scholar 

  • Montazerabadi A, Beik J et al (2019) Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. Artif Cells Nanomed Biotechnol 47(1):330–340. https://doi.org/10.1080/21691401.2018.1557670

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee I, Mylonakis A et al (2009) Effect of nonsurfactant template content on the particle size and surface area of monodisperse mesoporous silica nanospheres. Microporous Mesoporous Mater 122(1–3):168–174

    CAS  Google Scholar 

  • Nagajyothi P, Lee S-E et al (2012) Green synthesis of silver and gold nanoparticles using Lonicera japonica flower extract. Bull Kor Chem Soc 33(8):2609–2612

    CAS  Google Scholar 

  • Nagaraj B, Malakar B et al (2012) Environmental benign synthesis of gold nanoparticles from the flower extracts of Plumeria alba Linn, (Frangipani) and evaluation of their biological activities. Int J Drug Dev Res 4(1):144–150

    CAS  Google Scholar 

  • Naka Y, Komori Y et al (2010) One-pot synthesis of organo-functionalized monodisperse silica particles in W/O microemulsion and the effect of functional groups on addition into polystyrene. Colloids Surf A Physicochem Eng Asp 361(1–3):162–168

    CAS  Google Scholar 

  • Nakkala JR, Mata R et al (2016) The antioxidant and catalytic activities of green synthesized gold nanoparticles from Piper longum fruit extract. Process Saf Environ Prot 100:288–294

    CAS  Google Scholar 

  • Namanga J, Foba J et al (2013) Synthesis and magnetic properties of a superparamagnetic nanocomposite pectin-magnetite nanocomposite. J Nanomater 2013:87

    Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5(4):452–456

    CAS  PubMed  Google Scholar 

  • Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62(30):4588–4590

    CAS  Google Scholar 

  • Nel AE, Madler L et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557. https://doi.org/10.1038/nmat2442

    Article  CAS  PubMed  Google Scholar 

  • Nghiem THL, Nguyen TT et al (2012) Capping and in vivo toxicity studies of gold nanoparticles. Adv Nat Sci Nanosci Nanotechnol 3(1):015002

    Google Scholar 

  • Niidome T, Yamagata M et al (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347. https://doi.org/10.1016/j.jconrel.2006.06.017

    Article  CAS  PubMed  Google Scholar 

  • Niraimathee V, Subha V et al (2016) Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. Int J Environ Sustain Dev 15(3):227–240

    Google Scholar 

  • Oh KS, Kim RS et al (2008) Gold/chitosan/pluronic composite nanoparticles for drug delivery. J Appl Polym Sci 108(5):3239–3244

    CAS  Google Scholar 

  • Paciotti GF, Zhao J et al (2016) Synthesis and evaluation of paclitaxel-loaded gold nanoparticles for tumor-targeted drug delivery. Bioconjug Chem 27(11):2646–2657. https://doi.org/10.1021/acs.bioconjchem.6b00405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Neuss S et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949. https://doi.org/10.1002/smll.200700378

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Oza G et al (2012) Green synthesis of highly stable gold nanoparticles using Momordica charantia as nano fabricator. Arch Appl Sci Res 4(2):1135–1141

    CAS  Google Scholar 

  • Pang J, Na H et al (2005) Effect of ionic polymer on cetyltrimethyl ammonium bromide templated synthesis of mesoporous silica. Microporous Mesoporous Mater 86(1–3):89–95

    CAS  Google Scholar 

  • Parida UK, Bindhani BK et al (2011) Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World J Nano Sci Eng 1(04):93

    CAS  Google Scholar 

  • Parisi OI, Puoci F et al (2014) Polyphenols and their formulations: different strategies to overcome the drawbacks associated with their poor stability and bioavailability. In: Polyphenols in human health and disease. Elsevier, Burlington, pp 29–45

    Google Scholar 

  • Park S, Cha SH et al (2016) Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater Sci Eng C Mater Biol Appl 58:1160–1169. https://doi.org/10.1016/j.msec.2015.09.068

    Article  CAS  PubMed  Google Scholar 

  • Patil MP, Singh RD, Koli PB, Patil KT, Jagdale BS, Tipare AR, Kim GD (2018) Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb Pathog 121:184–189. https://doi.org/10.1016/j.micpath.2018.05.040

    Article  CAS  PubMed  Google Scholar 

  • Phull A-R, Abbas Q et al (2016) Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future J Pharm Sci 2(1):31–36

    Google Scholar 

  • Phumying S, Labuayai S et al (2013) Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe 3 O 4) nanoparticles. Appl Phys A 111(4):1187–1193

    CAS  Google Scholar 

  • Pinzaru I, Coricovac D et al (2018) Stable PEG-coated silver nanoparticles – a comprehensive toxicological profile. Food Chem Toxicol 111:546–556. https://doi.org/10.1016/j.fct.2017.11.051

    Article  CAS  PubMed  Google Scholar 

  • Popova M, Szegedi A et al (2014) Preparation of resveratrol-loaded nanoporous silica materials with different structures. J Solid State Chem 219:37–42

    CAS  Google Scholar 

  • Prahalathan P, Kumar S et al (2012) Morin attenuates blood pressure and oxidative stress in deoxycorticosterone acetate-salt hypertensive rats: a biochemical and histopathological evaluation. Metabolism 61(8):1087–1099. https://doi.org/10.1016/j.metabol.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  • Raja S, Ramesh V et al (2017) Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab J Chem 10(2):253–261

    CAS  Google Scholar 

  • Rajendran SP, Sengodan K (2017) Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. J Nanosci 2017:1–7. https://doi.org/10.1155/2017/8348507

  • Rao KS, El-Hami K et al (2005) A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci 289(1):125–131

    CAS  PubMed  Google Scholar 

  • Rivera-Rangel RD, González-Muñoz MP et al (2018) Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf A Physicochem Eng Asp 536:60–67

    CAS  Google Scholar 

  • Roohi F, Lohrke J et al (2012) Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 7:4447–4458. https://doi.org/10.2147/IJN.S33120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenholm JM, Sahlgren C et al (2011) Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr Drug Targets 12(8):1166–1186

    CAS  PubMed  Google Scholar 

  • Rovani S, Santos JJ et al (2018) Highly pure silica nanoparticles with high adsorption capacity obtained from sugarcane waste ash. ACS Omega 3(3):2618–2627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Rico M, Pérez-Esteve É et al (2017) Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chem 233:228–236

    CAS  PubMed  Google Scholar 

  • Sallem F, Haji R et al (2019) Elaboration of trans-resveratrol derivative-loaded superparamagnetic Iron oxide nanoparticles for glioma treatment. Nanomaterials (Basel) 9(2). https://doi.org/10.3390/nano9020287

  • Seip CT, O'Connor CJ (1999) The fabrication and organization of self-assembled metallic nanoparticles formed in reverse micelles. Nanostruct Mater 12(1–4):183–186

    Google Scholar 

  • Semmler-Behnke M, Kreyling WG et al (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4(12):2108–2111. https://doi.org/10.1002/smll.200800922

    Article  CAS  PubMed  Google Scholar 

  • Shaik M, Khan M et al (2018) Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10(4):913

    Google Scholar 

  • Shanmugam MK, Rane G et al (2015) The multifaceted role of curcumin in cancer prevention and treatment. Molecules 20(2):2728–2769. https://doi.org/10.3390/molecules20022728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Yadav S et al (2019) Biofabrication and characterization of flavonoid-loaded Ag, Au, Au-Ag bimetallic nanoparticles using seed extract of the plant Madhuca longifolia for the enhancement in wound healing bio-efficacy. Prog Biomater 8(1):51–63. https://doi.org/10.1007/s40204-019-0110-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty PK, Venuvanka V et al (2015) Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. Int J Nanomedicine 10:6477–6491. https://doi.org/10.2147/IJN.S90964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Tan L et al (2014) Green synthesis of Fe3O4 nanoparticles with controlled morphologies using urease and their application in dye adsorption. Dalton Trans 43(33):12474–12479. https://doi.org/10.1039/c4dt01161a

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Madhu S et al (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807

    CAS  Google Scholar 

  • Shrifian-Esfahni A, Salehi MT et al (2015) Chitosan-modified superparamgnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. Chemik 69(1):19–32

    CAS  Google Scholar 

  • Shukla R, Bansal V et al (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(23):10644–10654. https://doi.org/10.1021/la0513712

    Article  CAS  Google Scholar 

  • Silva GA (2004) Introduction to nanotechnology and its applications to medicine. Surg Neurol 61(3):216–220

    PubMed  Google Scholar 

  • Singh AP, Singh R et al (2019) Health benefits of resveratrol: evidence from clinical studies. Med Res Rev. https://doi.org/10.1002/med.21565

  • Sivaramakrishnan V, Devaraj SN (2010) Morin fosters apoptosis in experimental hepatocellular carcinogenesis model. Chem Biol Interact 183(2):284–292. https://doi.org/10.1016/j.cbi.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  • Sokolik CG, Lellouche J-P (2018) Hybrid-silica nanoparticles as a delivery system of the natural biocide carvacrol. RSC Adv 8(64):36712–36721

    CAS  Google Scholar 

  • Sonavane G, Tomoda K et al (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 66(2):274–280. https://doi.org/10.1016/j.colsurfb.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  • Sparreboom A, van Tellingen O et al (1996) Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res 56(9):2112–2115

    CAS  PubMed  Google Scholar 

  • Sre PR, Reka M et al (2015) Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim Acta A Mol Biomol Spectrosc 135:1137–1144

    Google Scholar 

  • Sripanyakorn S, Jugdaohsingh R et al (2009) The comparative absorption of silicon from different foods and food supplements. Br J Nutr 102(6):825–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stensberg MC, Wei Q et al (2011) Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond) 6(5):879–898. https://doi.org/10.2217/nnm.11.78

    Article  CAS  Google Scholar 

  • Stivala LA, Savio M et al (2001) Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem 276(25):22586–22594. https://doi.org/10.1074/jbc.M101846200

    Article  CAS  PubMed  Google Scholar 

  • Stöber W, Fink A et al (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Google Scholar 

  • Summerlin N, Qu Z et al (2016) Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf B Biointerfaces 144:1–7. https://doi.org/10.1016/j.colsurfb.2016.03.076

    Article  CAS  PubMed  Google Scholar 

  • Sundar VD, Dhanaraju MD et al (2014) Fabrication and characterization of etoposide loaded magnetic polymeric microparticles. Int J Drug Deliv 6(1):24

    CAS  Google Scholar 

  • Tan T, Liu S et al (2011) 5.14-microemulsion preparative methods (overview) A2-Andrews, David L. In: Comprehensive nanoscience and technology. Academic Press, Amsterdam, pp 399–441

    Google Scholar 

  • Tao Z, Morrow MP et al (2008) Mesoporous silica nanoparticles inhibit cellular respiration. Nano Lett 8(5):1517–1526. https://doi.org/10.1021/nl080250u

    Article  CAS  PubMed  Google Scholar 

  • Teimuri-Mofrad R, Hadi R et al (2017) Green synthesis of gold nanoparticles using plant extract: mini-review. Nanochem Res 2(1):8–19

    CAS  Google Scholar 

  • Thuc CNH, Thuc HH (2013) Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett 8(1):58

    PubMed  PubMed Central  Google Scholar 

  • Tili E, Michaille JJ et al (2010) Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 31(9):1561–1566. https://doi.org/10.1093/carcin/bgq143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong L, Wei Q et al (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85(1):21–32. https://doi.org/10.1111/j.1751-1097.2008.00507.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran QH, Le A-T (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4(3):033001

    Google Scholar 

  • Turkevich J, Stevenson PC et al (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11(0):55–75. https://doi.org/10.1039/df9511100055

    Article  Google Scholar 

  • Vallet-Regi M, Ramila A et al (2001) A new property of MCM-41: drug delivery system. Chem Mater 13(2):308–311

    CAS  Google Scholar 

  • Vallet-Regi M, Balas F et al (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed Engl 46(40):7548–7558. https://doi.org/10.1002/anie.200604488

    Article  CAS  PubMed  Google Scholar 

  • Venkateswarlu S, Rao YS et al (2013) Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mater Lett 100:241–244

    CAS  Google Scholar 

  • Venkateswarlu S, Kumar BN et al (2014) Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Phys B Condens Matter 449:67–71

    Google Scholar 

  • Venkateswarlu S, Kumar BN et al (2019) A novel green synthesis of Fe3O4 magnetic nanorods using Punica Granatum rind extract and its application for removal of Pb (II) from aqueous environment. Arab J Chem 12(4):588–596. https://doi.org/10.1016/j.arabjc.2014.09.006

  • Verma NK, Crosbie-Staunton K et al (2013) Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnol 11(1). https://doi.org/10.1186/1477-3155-11-1

  • Vidal-Vidal J, Rivas J et al (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf A Physicochem Eng Asp 288(1–3):44–51

    CAS  Google Scholar 

  • Wallerath T, Deckert G et al (2002) Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 106(13):1652–1658

    CAS  PubMed  Google Scholar 

  • Wang Y-XJ (2015) Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol 21(47):13400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Sun J et al (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38(7):1113–1118

    CAS  Google Scholar 

  • Wang Z, Zhu H et al (2009) One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles. Nanotechnology 20(46):465606. https://doi.org/10.1088/0957-4484/20/46/465606

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Shah ZH et al (2014) Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications. Nanoscale 6(9):4418–4437. https://doi.org/10.1039/c3nr06025j

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Liu Y et al (2017) Effect of paclitaxel-mesoporous silica nanoparticles with a core-shell structure on the human lung cancer cell line A549. Nanoscale Res Lett 12(1):66. https://doi.org/10.1186/s11671-017-1826-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen H, Dan M et al (2017) Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One 12(9):e0185554. https://doi.org/10.1371/journal.pone.0185554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel E, Somoza V (2005) Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 49(5):472–481. https://doi.org/10.1002/mnfr.200500010

    Article  CAS  PubMed  Google Scholar 

  • Wetzel S, Bon RS et al (2011) Biology-oriented synthesis. Angew Chem Int Ed 50(46):10800–10826

    CAS  Google Scholar 

  • Wu TW, Fung KP et al (1995) Molecular properties and myocardial salvage effects of morin hydrate. Biochem Pharmacol 49(4):537–543

    CAS  PubMed  Google Scholar 

  • Wu W, He Q et al (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Harper BJ et al (2017) Differential dissolution and toxicity of surface functionalized silver nanoparticles in small-scale microcosms: impacts of community complexity. Environ Sci Nano 4(2):359–372. https://doi.org/10.1039/c6en00324a

    Article  CAS  Google Scholar 

  • Yallapu MM, Othman SF et al (2012) Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int J Nanomedicine 7:1761–1779. https://doi.org/10.2147/IJN.S29290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yallapu MM, Ebeling MC et al (2013) Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol Cancer Ther 12(8):1471–1480. https://doi.org/10.1158/1535-7163.MCT-12-1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Jiang J et al (2014) Synthesis and characterization of silica nanoparticles preparing by low-temperature vapor-phase hydrolysis of SiCl4. Ind Eng Chem Res 53(30):11884–11890

    CAS  Google Scholar 

  • Ye Y, Hui L et al (2018) Effects of silica nanoparticles on endolysosome function in primary cultured neurons. Can J Physiol Pharmacol 999:1–9

    Google Scholar 

  • Yilmaz M, Karanastasis AA et al (2019) Inclusion of quercetin in gold nanoparticles decorated with supramolecular hosts amplifies its tumor targeting properties. ACS Appl Bio Mater. https://doi.org/10.1021/acsabm.8b00748

  • Yu Y-Y, Chen C-Y et al (2003) Synthesis and characterization of organic–inorganic hybrid thin films from poly (acrylic) and monodispersed colloidal silica. Polymer 44(3):593–601

    CAS  Google Scholar 

  • Yu K, Guo Y et al (2005) Synthesis of silica nanocubes by sol–gel method. Mater Lett 59(29–30):4013–4015

    CAS  Google Scholar 

  • Yu J, Xu D et al (2016) Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett 166:110–112

    CAS  Google Scholar 

  • Yu L, Shang F et al (2018) The anti-biofilm effect of silver-nanoparticle-decorated quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ 6:e5711. https://doi.org/10.7717/peerj.5711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafra-Stone S, Yasmin T et al (2007) Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51(6):675–683

    CAS  PubMed  Google Scholar 

  • Zaky R, Hessien M et al (2008) Preparation of silica nanoparticles from semi-burned rice straw ash. Powder Technol 185(1):31–35

    CAS  Google Scholar 

  • Zhang G, Yang Z et al (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30(10):1928–1936. https://doi.org/10.1016/j.biomaterials.2008.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhao X et al (2010) A study on the consecutive preparation of d-xylose and pure superfine silica from rice husk. Bioresour Technol 101(4):1263–1267

    CAS  PubMed  Google Scholar 

  • Zhang H, Dunphy DR et al (2012) Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. J Am Chem Soc 134(38):15790–15804. https://doi.org/10.1021/ja304907c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y-h, Cheng Y et al (2006) Synthesis and magnetic properties of Fe3O4 nanoparticles. Mater Res Bull 41(3):525–529

    CAS  Google Scholar 

  • Zhou W, He W et al (2009) Biosynthesis and magnetic properties of mesoporous Fe3O4 composites. J Magn Magn Mater 321(8):1025–1028

    CAS  Google Scholar 

  • Zhou X, Zhang N et al (2017) Silicates in orthopedics and bone tissue engineering materials. J Biomed Mater Res A 105(7):2090–2102

    CAS  PubMed  Google Scholar 

  • Zhu X, Tian S et al (2012) Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One 7(9):e46286. https://doi.org/10.1371/journal.pone.0046286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Zhu Y et al (2014) Mesoporous silica nanoparticles/hydroxyapatite composite coated implants to locally inhibit osteoclastic activity. ACS Appl Mater Interfaces 6(8):5456–5466

    CAS  PubMed  Google Scholar 

  • Zulfiqar U, Subhani T et al (2016) Synthesis and characterization of silica nanoparticles from clay. J Asian Ceramic Soc 4(1):91–96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairam Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meena, J., Gupta, A., Ahuja, R., Panda, A.K., Bhaskar, S. (2020). Inorganic Particles for Delivering Natural Products. In: Saneja, A., Panda, A., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 44. Sustainable Agriculture Reviews, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-030-41842-7_6

Download citation

Publish with us

Policies and ethics