Skip to main content

Age-Since-Infection Structured Models Based on Game Theory

  • Chapter
  • First Online:
Age Structured Epidemic Modeling

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 52))

  • 712 Accesses

Abstract

Game theory is the process of modeling strategic interactions between two or more players in a situation containing set rules and outcomes. Game theory is used in many disciplines, but we are interested in introducing here its application to infectious diseases. Vaccination against all childhood diseases poses an interesting dilemma to the parents: if enough children in the population are vaccinated, then their child may be protected and taking the risk and the potential side effects of vaccination might be unnecessary. Thus, every parent must answer the question whether to vaccinate or not their child. Thus, situation can be studied and analyzed with game theory. Because the decision depends on the number of infected/recovered and vaccinated children in the population, the decision depends on time. This leads to application of evolutionary game theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Bauch, Imitation dynamics predict vaccinating behaviour. Proc. R. Soc. B 272, 1669–1675 (2005)

    Article  Google Scholar 

  2. C. Bauch, D. Earn, Vaccination and the theory of games. Proc. Natl Acad. Sci. USA 101, 13391–13394 (2004)

    Article  MathSciNet  Google Scholar 

  3. CDC, National Center for Immunization and Respiratory Diseases (NCIRD)

    Google Scholar 

  4. Centers for Disease Control and Prevention, CDC Health Information for International Travel 2014 (Oxford University Press, New York, 2014)

    Google Scholar 

  5. D. Cornforth, T. Reluga, E. Shim, C. Bauch, A. Galvani, L. Meyers, Erratic flu vaccination emerges from short-sighted behaviour in contact networks. Plos Comput. Biol. 7, e1001062 (2011)

    Article  Google Scholar 

  6. R. Cressman, Evolutionary Dynamics and Extensive Form Games (MIT Press, Cambridge, MA, 2003)

    Book  Google Scholar 

  7. A. d’Onofrio, P. Manfredi, Vaccine demand driven by vaccine side effects: dynamic implications for sir diseases. J. Theor. Biol. 264, 237–252 (2010)

    Article  MathSciNet  Google Scholar 

  8. A. d’Onofrio, P. Manfredi, P. Poletti, The impact of vaccine side effects on the natural history of immunization programmes: an imitation-game approach. J. Theor. Biol. 273, 63–71 (2011)

    Article  MathSciNet  Google Scholar 

  9. P. Fine, J. Clarkson, Individual versus public priorities in the determination of optimal vaccination policies. Am. J. Epidemiol. 124, 1012–1020 (1986)

    Article  Google Scholar 

  10. F. Fu, D. Rosenbloom, L. Wang, M. Nowak, Imitation dynamics of vaccination behaviour on social networks. Proc. R. Soc. B 278, 42–49 (2011)

    Article  Google Scholar 

  11. M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs CNR, vol. 7 (Giadini Editorie Stampatori, Pisa, 1994)

    Google Scholar 

  12. P. Magal, Compact attractors for time-periodic age-structured population models. Electron. J. Differ. Equ. 2001, 1–35 (2001)

    MathSciNet  MATH  Google Scholar 

  13. P. Magal, C.C. McCluskey, G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model. Appl. Anal. 89, 1109–1140 (2010)

    Article  MathSciNet  Google Scholar 

  14. C. Metcalf, J. Lessler, P. Klepac, F. Cutts, B. Grenfell, Impact of birth rate, seasonality and transmission rate on minimum levels of coverage needed for rubella vaccination. Epidemiol. Infect. 140, 2290–2301 (2012)

    Article  Google Scholar 

  15. T. Reluga, A. Galvani, A general approach for population games with application to vaccination. Math. Biosci. 230, 67–78 (2011)

    Article  MathSciNet  Google Scholar 

  16. E. Shim, G. Chapman, A. Galvani, Decision making with regard to antiviral intervention during an influenza pandemic. Med. Decis. Making 30, E64–81 (2010)

    Article  Google Scholar 

  17. E. Shim, J. Grefenstette, S. Albert, B. Cakouros, D. Burke, A game dynamic model for vaccine skeptics and vaccine believers: measles as an example. J. Theor. Biol. 295, 194–203 (2012)

    Article  MathSciNet  Google Scholar 

  18. H.L. Smith, H.R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, (American Mathematical Society, Providence, 2011)

    MATH  Google Scholar 

  19. P. Taylor, L. Jonker, Evolutionary stable strategies and game dynamics. Math. Biosci. 40, 145–156 (1978)

    Article  MathSciNet  Google Scholar 

  20. H.R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology. Math. Biosci. 166, 173–201 (2000)

    Article  MathSciNet  Google Scholar 

  21. S. Xia, J. Liu, A computational approach to characterizing the impact of social influence on individuals’ vaccination decision making. PLoS ONE 8, e60373 (2013)

    Article  Google Scholar 

  22. S. Xia, J. Liu, A belief-based model for characterizing the spread of awareness and its impacts on individuals’ vaccination decisions. J. R. Soc. B 11, 20140013 (2014)

    Google Scholar 

  23. S. Xia, J. Liu, W. Cheung, Identifying the relative priorities of subpopulations for containing infectious disease spread. PLoS ONE 8, e65271 (2013)

    Article  Google Scholar 

  24. F. Xu, R. Cressman, Disease control through voluntary vaccination decisions based on the smoothed best response. Comput. Math. Methods Med. 2014, 14 (2014)

    MathSciNet  MATH  Google Scholar 

  25. J. Yang, Y. Chen, Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate. J. Bio. Dyn., 12(1), 789–816

    Article  MathSciNet  Google Scholar 

  26. J. Yang, M. Martcheva, L. Wang, Global threshold dynamics of an SIVS model with waning vaccine-induced immunity and nonlinear incidence. Math. Biosci. 268, 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  27. J. Yang, M. Martcheva, Y. Chen, Imitation dynamics of vaccine decision-making behaviours based on the game theory. J. Biol. Dyn. 10, 31–58 (2016)

    Article  MathSciNet  Google Scholar 

  28. K. Yosida, Functional Analysis, 2nd edn. (Springer, Berlin/Heidelberg/New York, 1968)

    Book  Google Scholar 

  29. H. Zhang, F. Fu, W. Zhang, B. Wang, Rational behavior is a “double-edged sword” when considering voluntary vaccination. Phys. A 391, 4807–4815 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, XZ., Yang, J., Martcheva, M. (2020). Age-Since-Infection Structured Models Based on Game Theory. In: Age Structured Epidemic Modeling. Interdisciplinary Applied Mathematics, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-42496-1_4

Download citation

Publish with us

Policies and ethics