Skip to main content

A Kinematics of Defects in Solid Crystals

  • Chapter
  • First Online:
Geometric Continuum Mechanics

Part of the book series: Advances in Mechanics and Mathematics ((ACM,volume 43))

Abstract

We review various mathematical constructions relevant to the kinematical model of defective crystals that Davini proposed in 1986. Partly, the motivation for this is the need to place quantities that are useful in phenomenological theories of inelastic behaviour (which are many and rather varied) in a general mathematical framework. Partly, too, simple assumptions regarding defective crystal symmetries are inadequate, so a re-evaluation of those assumptions is necessary. Also, as motivation, we take the current effort in continuum mechanics to rationalize the connection between continuum and discrete models of materials, and so review results which elucidate the rigorous connection between continuous and discrete structures in the context of Davini’s model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let G be a three dimensional Lie group, with commutator (x, y) ≡x −1 y −1 xy. Let G ≡ G 0 and define G 1 ≡ (G, G 0), the group generated by elements of the form (x, y), x ∈ G, y ∈ G 0. Define G k ≡ (G, G k−1) inductively, k ≥ 1. G is called nilpotent if and only if G k is the trivial group {0} for sufficiently large k. For three dimensional nilpotent groups, , where e is a temporary notation for the group identity 0.

    Let \(\mathbf {\mathfrak {g}}\) be the Lie algebra corresponding to a Lie group G, with Lie bracket \([{\mathbf {{x}}},{\mathbf {{y}}}], {\mathbf {{x}}}, {\mathbf {{y}}}\in \mathbf {\mathfrak {g}}\). Let \(\mathbf {\mathfrak {g}}\equiv \mathbf {\mathfrak {g}}_0\) and define \(\mathbf {\mathfrak {g}}_1 \equiv \left [\mathbf {\mathfrak {g}},\mathbf {\mathfrak {g}}_0\right ]\), the subspace generated by elements of the form \([{\mathbf {{x}}}, {\mathbf {{y}}}],{\mathbf {{x}}}\in \mathbf {\mathfrak {g}}, {\mathbf {{y}}} \in \mathbf {\mathfrak {g}}_0\). Define \(\mathbf {\mathfrak {g}}_k\equiv \left [\mathbf {\mathfrak {g}}, \mathbf {\mathfrak {g}}_{k-1}\right ]\) inductively, k ≥ 1. \(\mathbf {\mathfrak {g}}\) is called nilpotent if and only if \(\mathbf {\mathfrak {g}}_k\) is the trivial subspace {0} for sufficiently large k. For three dimensional nilpotent algebras, .

    A Lie group is nilpotent if and only if the corresponding Lie algebra is nilpotent (Gorbatsevich, Onishchik, Vinberg [19]).

  2. 2.

    For the motivation of this assumption see [13].

  3. 3.

    A vector field on a manifold M is considered complete if the corresponding flow is globally defined.

  4. 4.

    Given a Lie group G and its closed subgroup G x, the quotient space GG x is called a homogeneous manifold if it admits a structure of smooth manifold.

  5. 5.

    The process of composing the actions of one-parameter subgroups to obtain the whole group G acting on the corresponding base space is only valid if the group G is connected [35].

  6. 6.

    The reductivity of a homogeneous space GG 0 is usually defined by requiring that there exists a vector space \(\frak {D}\subset \frak {g}\) such that the algebra \(\frak {g}=\frak {g}_0\oplus \frak {D}\) and such that it is invariant under the adjoint action of the subgroup G 0. The condition \([\frak {g}_0,\frak {D}]\subset \frak {D}\) implies the invariance of the distribution \(\frak {D}\) under the adjoint action of the group G 0, but not vice versa. However, when the group G is a connected Lie group, both conditions are equivalent.

    Note that not all homogeneous spaces are reductive [44]. Note also that it is not necessarily easy to determine if a given homogeneous space is indeed reductive as it requires finding a vector space complement to \(\frak {g}_0\) in \(\frak {g}\) (among all possible complements) which satisfies the said condition of invariance.

  7. 7.

    See for example [24].

  8. 8.

    The equivariance of the one-form Π is the direct consequence of the assumption that the homogeneous manifold GG 0 is reductive as shown in [13].

  9. 9.

    More detailed presentation can be found in [13].

  10. 10.

    To confirm this isomorphism select

    $$\displaystyle \begin{aligned}\begin{pmatrix}0&0&0\\ 0&0&-1\\ 0&1&0\end{pmatrix},\: \begin{pmatrix}0&-1&0\\ 1&0&0\\ 0&0&0\end{pmatrix},\: \begin{pmatrix}0&0&-1\\ 0&0&0\\ 1&0&0\end{pmatrix}\end{aligned}$$

    as a basis of \(\frak {so}(3)\) [2].

References

  1. Auslander, L., Green, L., Hahn, F.: Flows on homogeneous spaces, Annals of Mathematics Studies 53, Princeton University Press, Princeton NJ (1963)

    Google Scholar 

  2. Baker A.: Matrix groups, Springer-Verlag, London (2003)

    Google Scholar 

  3. Bianchi,L.: Lezioni sulla teoria dei gruppi continui finiti di trasformazioni. Enrico Spoerri, Editore, Pisa (1918)

    Google Scholar 

  4. Bilby, B.A.: Continuous distributions of dislocations, in Progress in Solid Mechanics, vol. 1, ed. I. Sneddon, North-Holland, Amsterdam (1960).

    Google Scholar 

  5. Cauchy, A.L.: Sur l’equilibre et le mouvement d’un systeme de points materials sollecites par d’attraction ou de repulsion mutuelle, Ex. de Math., 3, 227–287, (1828)

    Google Scholar 

  6. Cermelli, P., Parry, G.P.: The structure of uniform discrete defective crystals, Continuum Mechanics and Thermodynamics, 18, 47–61 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chipot, M., Kinderlehrer, D.: Equilibrium configurations of crystals, Arch. Rat. Mech. Anal., 103, 237–277, (1988)

    Article  MathSciNet  Google Scholar 

  8. Crainic, M., Fernandes, R.L.: Integrability of Lie brackets, Annals of Mathematics, 157, 575–620, (2003), https://doi.org/10.4007/annals.2003.157.575

    Article  MathSciNet  Google Scholar 

  9. Davini, C.: A proposal for a continuum theory of defective crystals, Arch. Ration. Mech. Anal., 96, 295–317 (1986), https://doi.org/10.1007/BF00251800

    Article  MathSciNet  Google Scholar 

  10. Davini, C., Parry, G.P.: On defect-preserving deformations in crystals, Int. J.Plasticity 5, 337–369 (1989), https://doi.org/10.1016/0749-6419(89)90022-3

  11. Davini, C. and Parry, G.P.: A complete list of invariants for defective crystals, Proc. R. Soc. Lond. A 432, 341–365 (1991), Erratum: Proc. R. Soc. Lond. A 434, 735 (1991), https://doi.org/10.1098/rspa1991.0125

  12. Elżanowski, M., Parry G.P.: Material symmetry in a theory of continuously defective crystals, J. Elasticity, 74, 215–237, (2004)

    Article  MathSciNet  Google Scholar 

  13. Elżanowski, M., Parry, G.P.: Connection and curvature in crystals with nonconstant dislocation density, Math. Mech. Solids, 1–12 (2018), https://doi.org/10.1177/1081286518791008

  14. Elżanowski, M., Preston, S.: On continuously defective elastic crystals, Miskolc Mathematical Notes, 14(2), 659–670 (2013)

    Article  MathSciNet  Google Scholar 

  15. Epstein, M.: The Geometrical Language of Continuum Mechanics, Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  16. Fernandes, R.L., Struchiner, I.: The classifying Lie algebroid of a geometric structure I: Classes of coframes. Trans. Ams. Math. Soc., 366, 2419–2462 (2014), https://doi.org/10.1090/S0002-9947-2014-05973-4

    Article  MathSciNet  Google Scholar 

  17. Fonseca, I., Parry, G.P.: Equilibrium configurations of defective crystals. Arch. Ration. Mech. Anal., 120, 245–283 (1992), https://doi.org/10.1007/BF00375027

    Article  MathSciNet  Google Scholar 

  18. Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Lie Groups and Lie Algebras I, Encyclopedia of Mathematical Sciences, Vol. 20, Onishchik, A.L. (ed.), Springer-Verlag, Berlin Heiderberg (1993)

    Google Scholar 

  19. Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Foundations of Lie theory and Lie transformation groups, Springer-Verlag, Berlin, Heidelberg (1997)

    MATH  Google Scholar 

  20. Green, A.E., Adkins,J.E.: Large Elastic Deformations, (2nd ed.), Oxford University Press, London, Oxford (1970)

    MATH  Google Scholar 

  21. Jacobsen, N.: Lie algebras, Dover Publications, New York (1979)

    Google Scholar 

  22. Johnson, D.L.: Presentations of groups, London Mathematical Society Student Texts 15, 2nd edn, Cambridge University Press, Cambridge (1997).

    Google Scholar 

  23. Kobayashi, S.: Transformation Groups in Differential Geometry, Springer-Verlag, Berlin Heidelberg (1995)

    MATH  Google Scholar 

  24. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. I, II, John Wiley & Sons, Inc., New York (1996)

    MATH  Google Scholar 

  25. Kondo, K.: Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. RAAG memoirs of the unifying study of basic problems in engineering and physical science by means of geometry, 1, Gakuyusty Bunken Fukin-Day, Tokyo (1955)

    Google Scholar 

  26. Lee, E.H.: Finite-strain elastic-plastic theory with application. J. of Appl.Physics., 38, 19–27, (1967)

    Google Scholar 

  27. Lee, E.H.: Elastic-plastic deformation at finite strains, J. of App. Mechanics, 36, 1–6, (1969)

    Article  Google Scholar 

  28. Love, A.E.H.: A treatise on the mathematical theory of elasticity, Dover Publications, New York (1927)

    MATH  Google Scholar 

  29. Komrakov, B., Churyamov, A., Doubrov, B.: Two-dimensional homogeneous spaces, Preprint Series 17-Matematisk institutt, Universitetet i Oslo (1993)

    Google Scholar 

  30. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory, Dover, New York (1976)

    MATH  Google Scholar 

  31. Mal’cev, A.: On a class of homogeneous spaces, Izv. Akad. Nauk SSSR, Ser. Mat., 13, 9–32, (1949), Am. Math. Soc. Translation, 39, (1949)

    Google Scholar 

  32. Nicks, R., Parry, G.P.: On symmetries of crystals with defects related to a class of solvable groups (S 1), Math. Mech. Solids, 17, 631–651 (2011), https://doi.org/10.1177/1081286511427485

    Article  MathSciNet  Google Scholar 

  33. Nicks, R., Parry, G.P.: On symmetries of crystals with defects related to a class of solvable groups (S 2), Mathematical Methods in the Applied Sciences, 35, 1741–1755, (2012)

    Article  MathSciNet  Google Scholar 

  34. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, Berlin (1993)

    Google Scholar 

  35. Olver, P.J.: Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  36. Palais, R.S.: A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957)

    Google Scholar 

  37. Parry, G.P.: Group properties of defective crystal structures, Math. Mech. Solids, 8, 515–537, (2003)

    Article  MathSciNet  Google Scholar 

  38. Parry, G.P.: Rotational Symmetries of Crystals with Defects, J. Elasticity, 94, 147–166, (2009)

    Article  MathSciNet  Google Scholar 

  39. Parry, G.P.: Elastic Symmetries of Defective Crystals, J. Elasticity, 101, 101–120, (2010)

    Article  MathSciNet  Google Scholar 

  40. Parry, G.P.: Discrete structures in continuum descriptions of defective crystals, Phil.Trans.R.Soc. A, 374, (2015), https://doi.org/10.1098/rsta.2015.0172

  41. Parry, G.P., S̆ilhavý, M.: Elastic invariants in the theory of defective crystals, Proc. R. Soc. Lond. A 455, 4333–4346 (1999), https://doi.org/10.1098/rspa.1999.0503

    MATH  Google Scholar 

  42. Parry, G.P., Zyskin, M.: Geometrical structure of two-dimensional crystals with non-constant dislocation density, J.Elast 127, 249–268 (2017), https://doi.org/10.1007/s10659-016-9612-3

  43. Pitteri, M., Zanzotto, G.: Continuum Models for Phase Transitions and Twinning in Crystals, Chapman and Hall, Boca Raton, London, New York, Washington DC (2003)

    Google Scholar 

  44. Poor, W.A.: Differential Geometric Structures, McGraw-Hill, New York (1981)

    MATH  Google Scholar 

  45. Pontryagin, L.S.: Topological Groups, 2nd edn. Gordon and Breach, New York, London, Paris (1955)

    Google Scholar 

  46. Rossmann, W.: Lie Groups, An Introduction Through Linear groups, Oxford Graduate Texts in Mathematics; 5, Oxford University Press, Oxford (2006)

    Google Scholar 

  47. Senechal, M.: Quasicrystals and geometry, Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  48. Thurston, W.:Three Dimensional Geometry and Topology, vol 1, Princeton University Press, Princeton (1997)

    Google Scholar 

  49. Tricerri, F., Vanhecke, L.: Homogeneous Structures on Riemannian Manifolds, Cambridge University Press, Cambridge (1983)

    Book  Google Scholar 

  50. Varadarajan, V.S.: Lie groups, Lie algebras, and their representations, Prentice–Hall, Englewood Cliffs (1974)

    Google Scholar 

Download references

Acknowledgements

We are very grateful to the EPSRC for support provided via Research Grant EP/M024202/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Z. Elżanowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elżanowski, M.Z., Parry, G.P. (2020). A Kinematics of Defects in Solid Crystals. In: Segev, R., Epstein, M. (eds) Geometric Continuum Mechanics. Advances in Mechanics and Mathematics(), vol 43. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-42683-5_7

Download citation

Publish with us

Policies and ethics