Skip to main content

How Gut Micro-organisms Make Use of Available Carbohydrates

  • Chapter
  • First Online:
Why Gut Microbes Matter

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

A significant fraction of the carbohydrates in our diet cannot be broken down by our own digestive enzymes. For simplicity, these ‘non-digestible carbohydrates’ are here referred to simply as ‘fibre’. This diet-derived fibre passes through the stomach and small intestine to reach the large intestine, where it becomes the major energy source for the resident microbiota. Most of the fibre that we eat is fermentable, meaning that it can be broken down by our gut microbiota under the anaerobic conditions that prevail in the large intestine. On the other hand, some fibre is non-fermentable and behaves simply as a ‘bulking agent’, passing right through the gut un-degraded. In addition, carbohydrates produced by our own cells can be accessed by gut micro-organisms as energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ‘FODMAPS ’ stands for ‘Fermentable oligosaccharides, disaccharides, monosaccharides and polyols’. This is in fact somewhat broader than the current definition of soluble fibre as it includes molecules such as lactose that have fewer than three sugar residues.

  2. 2.

    Previously there was a tendency to distinguish between resistant starches and non-starch plant fibre , with the term fibre limited to ‘non-starch polysaccharides (NSP)’ such as cellulose , xylans, pectins and inulin . This has now been largely abandoned, with resistant starch being regarded as a fibre .

References

  1. Ndeh D et al (2017) Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544:45–65

    Article  Google Scholar 

  2. Ze X et al (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6:1535–1543

    Article  CAS  Google Scholar 

  3. Cantarel BL et al (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  4. Macfarlane GT, Englyst HN (1986) Starch utilization by the human large intestinal microflora. J Appl Bacteriol 60:195–201

    Article  CAS  Google Scholar 

  5. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11:497–504

    Article  Google Scholar 

  6. Reeves AR, Wang GR, Salyers AA (1997) Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 179:643–649

    Article  CAS  Google Scholar 

  7. Martens EC et al (2009) Complex glycan catabolism by the human gut microbiota: the Bacteroides Sus-like paradigm. J Biol Chem 284:24673–24677

    Article  CAS  Google Scholar 

  8. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Microbiol Rev 6:121–131

    Article  CAS  Google Scholar 

  9. White BA et al (2014) Biomass utilization by gut microbiomes. Annu Rev Microbiol 68:279–296

    Article  CAS  Google Scholar 

  10. Rincon MT et al (2010) Abundance and diversity of dockerin-containing proteins in the fibre-degrading rumen bacterium Ruminococcus flavefaciens FD1. PLoS One 5:e12476

    Article  Google Scholar 

  11. Mukhopadhya I et al (2018) Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. Environ Microbiol 20:324–336

    Article  CAS  Google Scholar 

  12. Sheridan PO et al (2016) Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes. Microb Genom 2:e000043

    Google Scholar 

  13. Cockburn DW et al (2015) Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol 95:209–230

    Article  CAS  Google Scholar 

  14. Duncan SH et al (2016) Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid. Environ Microbiol 18:2214–2225

    Article  CAS  Google Scholar 

  15. Sonnenburg JL et al (2005) Glycan foraging in vivo by an intestine adapted bacterial symbiont. Science 107:1955–1959

    Article  Google Scholar 

  16. Reichardt N et al (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335

    Article  CAS  Google Scholar 

  17. Smilowitz JT et al (2014) Breast milk oligosaccharides: structure function relationships in the neonate. Annu Rev Nutr 34:143–169

    Article  CAS  Google Scholar 

  18. Reynolds AM et al (2019) Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393:434–445

    Article  CAS  Google Scholar 

  19. Aune D et al (2011) Dietary fibre, whole grains and risk of colorectal cancer: systematic review and dose response analysis of prospective studies. Br Med J 343:d6617

    Article  Google Scholar 

  20. Udigos-Rodriguez S et al (2018) Lactose malabsorption and intolerance: a review. Food Funct 9:4156–4068

    Google Scholar 

  21. Gibson GR et al (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275

    Article  CAS  Google Scholar 

  22. Chung WCF et al (2016) Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol 14:3

    Article  Google Scholar 

  23. Ramirez-Farias C et al (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101:541–550

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flint, H.J. (2020). How Gut Micro-organisms Make Use of Available Carbohydrates. In: Why Gut Microbes Matter. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43246-1_7

Download citation

Publish with us

Policies and ethics