Skip to main content

Simulation-Driven Multi-objective Evolution for Traffic Light Optimization

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2020)

Abstract

The constant growth of vehicles circulating in urban environments poses a number of challenges in terms of city planning and traffic regulation. A key aspect that affects the safety and efficiency of urban traffic is the configuration of traffic lights and junctions. Here, we propose a general framework, based on a realistic urban traffic simulator, SUMO, to aid city planners to optimize traffic lights, based on a customized version of NSGA-II. We show how different metrics -such as number of accidents, average speed of vehicles, and number of traffic jams- can be taken into account in a multi-objective fashion to obtain a number of Pareto-optimal light configurations. Our experiments, conducted on two city scenarios in Italy and different combinations of fitness functions, demonstrate the validity of this approach and show how evolutionary optimization is an effective tool for traffic light optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source: https://ec.europa.eu/transport/themes/urban/urban_mobility_en.

  2. 2.

    Data collected by TomTom: https://ec.europa.eu/transport/facts-fundings/scoreboard/compare/energy-union-innovation/road-congestion_en.

  3. 3.

    Vehicles on a low-priority edge have to wait until vehicles on a high-priority edge have passed the junction.

  4. 4.

    By default, this generates vehicles with a constant period and arrival rate of 1/period per second. By using values below 1, multiple arrivals per second can be achieved. Routes are generates such that a new vehicle with a random path and destination is inserted at a certain starting position every period seconds, determining a certain average traffic density.

  5. 5.

    https://github.com/alecacco/Traffic-Junction-Tuner.

References

  1. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5(3&4), 128–138 (2012)

    Google Scholar 

  2. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: International Conference on Intelligent Transportation Systems, pp. 2575–2582 (2018)

    Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Taale, H., Bäck, T., Preuss, M., Eiben, A., De Graaf, J., Schippers, C.: Optimizing traffic light controllers by means of evolutionary algorithms. In: European Congress on Intelligent Techniques and Soft Computing, vol. 3, pp. 1730–1734 (1998)

    Google Scholar 

  5. Taale, H., Middelham, F.: FLEXSYT-II-A validated microscopic simulation tool. IFAC Proc. Vol. 30(8), 883–888 (1997)

    Article  Google Scholar 

  6. Sanchez, J.J., Galan, M., Rubio, E.: Genetic algorithms and cellular automata: a new architecture for traffic light cycles optimization. In: Congress on Evolutionary Computation, vol. 2, pp. 1668–1674. IEEE (2004)

    Google Scholar 

  7. Turky, A.M., Ahmad, M.S., Yusoff, M.Z.M.: The use of genetic algorithm for traffic light and pedestrian crossing control. Int. J. Comput. Sci. Netw. Secur. 9(2), 88–96 (2009)

    Google Scholar 

  8. Turky, A.M., Ahmad, M.S., Yusoff, M.Z.M., Hammad, B.T.: Using genetic algorithm for traffic light control system with a pedestrian crossing. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS (LNAI), vol. 5589, pp. 512–519. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02962-2_65

    Chapter  Google Scholar 

  9. Singh, L., Tripathi, S., Arora, H.: Time optimization for traffic signal control using genetic algorithm. Int. J. Recent Trends Eng. 2(2), 4–6 (2009)

    Google Scholar 

  10. Teo, K.T.K., Kow, W.Y., Chin, Y.: Optimization of traffic flow within an urban traffic light intersection with genetic algorithm. In: International Conference on Computational Intelligence, Modelling and Simulation, pp. 172–177. IEEE (2010)

    Google Scholar 

  11. Gora, P.: A genetic algorithm approach to optimization of vehicular traffic in cities by means of configuring traffic lights. In: Ryżko, D., Ryńbiski, H., Gawrysiak, P., Kryszkiewicz, M. (eds.) Emerging Intelligent Technologies in Industry. SCI, vol. 369, pp. 1–10. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22732-5_1

    Chapter  Google Scholar 

  12. Nguyen, P.T.M., Passow, B.N., Yang, Y.: Improving anytime behavior for traffic signal control optimization based on NSGA-II and local search. In: International Joint Conference on Neural Networks, pp. 4611–4618. IEEE (2016)

    Google Scholar 

  13. Bravo, Y., Ferrer, J., Luque, G., Alba, E.: Smart mobility by optimizing the traffic lights: a new tool for traffic control centers. In: Alba, E., Chicano, F., Luque, G. (eds.) Smart-CT 2016. LNCS, vol. 9704, pp. 147–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39595-1_15

    Chapter  Google Scholar 

  14. API TraCI. https://sumo.dlr.de/docs/TraCI.html

  15. inspyred. https://pypi.python.org/pypi/inspyred

  16. Garrett, A.: inspyred: bio-inspired algorithms in Python (2015)

    Google Scholar 

  17. SUMO. https://sumo.dlr.de/docs

  18. Krauß, S.: Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics. Ph.D. thesis, Dt. Zentrum für Luft-und Raumfahrt eV, Abt. Unternehmensorganisation und-information (1998)

    Google Scholar 

  19. OpenStreetMap. https://www.openstreetmap.org

Download references

Acknowledgments

We thank Andrea Ferigo for his contribution to a preliminary implementation of the framework proposed in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Iacca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cacco, A., Iacca, G. (2020). Simulation-Driven Multi-objective Evolution for Traffic Light Optimization. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds) Applications of Evolutionary Computation. EvoApplications 2020. Lecture Notes in Computer Science(), vol 12104. Springer, Cham. https://doi.org/10.1007/978-3-030-43722-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43722-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43721-3

  • Online ISBN: 978-3-030-43722-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics