Skip to main content

Realization of the SI Base Units (S, M, Kilogram)

  • Chapter
  • First Online:
Units of Measurement

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 122))

  • 533 Accesses

Abstract

The second is the base unit effectively defined as the duration of 9,192,631,770 periods of the radiation corresponding to the transition between hyperfine levels of the ground state (0 K) of the caesium atom 135Cs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References (Kibble Balance)

  1. http://bipm.org/en/si/si-brochure/appendix2/

  2. A.I.A. Robinson, S. Schlamminger, Metrologia 53, A46–A58 (2016)

    Google Scholar 

  3. K. Fujii, H. Bettin, P. Becker, E. Massa, O. Rienitz, A. Pramann, A. Nicolaus, N. Kuramoto, I. Busch, M. Borys, Realization of the kilogram by the XRCD method. Metrologia 53(6), A19–A145 (2016)

    Google Scholar 

  4. R.L. Steiner, E.R. Williams, R. Liu, D.B. Newell, Uncertainty improvements of the NIST electronic kilogram. IEEE Trans. Instrum. Meas. 56, 592–596 (2007)

    Article  Google Scholar 

  5. S. Schlamminger, Design of the permanent-magnet system for NIST-4. IEEE Trans. Instrum. Meas. 62, 1524–1530 (2013)

    Article  Google Scholar 

  6. F. Jones, M. Tokunaga, Low temperature coefficient cobalt-rare earth magnets. IEEE Trans. Magn. 12, 968–970 (1976)

    Article  ADS  Google Scholar 

  7. P. Gournay, G. Geneves, F. Alves, M. Besbes, F. Villar, J. David, Magnetic circuit design for the BNM watt balance experiment. IEEE Trans. Instrum. Meas. 54, 742–745 (2005)

    Article  Google Scholar 

  8. I.A. Robinson, Towards the redefinition of the kilogram: a measurement of the Planck constant using the NPL Mark II watt balance. Metrologia 49, 113–156 (2012)

    Article  ADS  Google Scholar 

  9. X. Jiang, W. Zeng, I.M. Smith, P. Scott, F.X. Maletras, The detection of transient behaviour in environmental vibration for the watt balance. Meas. Sci. Technol. 18, 1487–1494 (2007)

    Google Scholar 

  10. W. Zeng, X. Jiang, I.M. Smith, P. Scott, Transient signal separation in watt balance experiments. Phys. Lett. A 374, 1301–1306 (2010)

    Article  ADS  Google Scholar 

  11. S.P. Benz, C.A. Hamilton, Application of the Josephson effect to voltage metrology. Proc. IEEE 92, 1617–1629 (2004)

    Article  Google Scholar 

  12. R. Behr, O. Kieler, J. Kohlmann, F. Müller, L. Palafox, Development and metrological applications of Josephson arrays at PTB. Meas. Sci. Technol. 23, 124002 (2012)

    Article  ADS  Google Scholar 

  13. Y. Tang, V.N. Ojha, S. Schlamminger, A. Rüfenacht, C.J. Burroughs, P.D. Dresselhaus, S.P. Benz, A 10 V programmable Josephson voltage standard and its applications for voltage metrology Metrologia 49, 635–643 (2012)

    Google Scholar 

  14. S. Solve, R. Chayramy, M. Stock, A bias source for the voltage reference of the BIPM watt balance. IEEE Trans. Instrum. Meas. 62, 1594–1599 (2013)

    Article  Google Scholar 

  15. I.A. Robinson, B.P. Kibble, An initial measurement of Planck’s constant using the NPL Mark II watt balance. Metrologia 44, 427–440 (2007)

    Article  ADS  Google Scholar 

  16. J. Kohlmann, R. Behr, T. Funck, Josephson voltage standards. Meas. Sci. Technol. 14, 1216–1228 (2003)

    Article  ADS  Google Scholar 

  17. S.P. Benz, C.A. Hamilton, C.J. Burroughs, T.E. Harvey, L.A. Christian, Stable 1 volt programmable voltage standard. Appl. Phys. Lett. 71, 1866–1868 (1997)

    Article  ADS  Google Scholar 

  18. C.A. Hamilton, Josephson voltage standards. Rev. Sci. Instrum. 71, 3611–3623 (2000)

    Article  ADS  Google Scholar 

  19. S. Topcu, L. Chassagne, D. Haddad, Y. Alayli, P. Juncar, High accuracy velocity control method for the French moving-coil watt balance Rev. Sci. Instrum. 75, 4824–4827 (2004)

    Article  ADS  Google Scholar 

  20. R.L. Steiner, D. Newell, E.R. Williams, Details of the 1998 watt balance experiment determining the Planck constant. J. Res. Natl Inst. Stand. Technol. 110, 1–26 (2005)

    Article  Google Scholar 

  21. EM Electronics A10 DC sub-nanovolt amplifier

    Google Scholar 

  22. D. Drung, J.-H. Storm, Ultralow-noise chopper amplifier with low input charge injection. IEEE Trans. Instrum. Meas. 60, 2347–2352 (2011)

    Article  Google Scholar 

  23. D. Haddad, B. Waltrip, R.L. Steiner, Low noise programmable current source for the NIST-3 and NIST-4 watt balance, in 2012 Conference on Precision Electromagnetic Measurements (2012), pp. 336–337

    Google Scholar 

  24. B.P. Kibble, I.A. Robinson, Guidance on eliminating interference from sensitive electrical circuits Technical Report DES 129, NPL (1993)

    Google Scholar 

  25. I.K. Harvey, A precise low temperature dc ratio transformer. Rev. Sci. Instrum. 43, 1626–1629 (1972)

    Article  ADS  Google Scholar 

  26. P. Gutmann, H. Bachmair, Cryogenic Current Comparator Metrology (Springer, Berlin, 1989), pp. 255–268

    Google Scholar 

  27. C.A. Sanchez, B.M. Wood, R.G. Green, J.O. Liard, D. Inglis, A determination of Planck’s constant using the NRC watt balance. Metrologia 51, S5–S14 (2014)

    Article  ADS  Google Scholar 

  28. H. Fang, A. Kiss, A. Picard, M. Stock, A watt balance based on a simultaneous measurement scheme. Metrologia 51, S80–S87 (2014)

    Article  ADS  Google Scholar 

  29. D. Kim, B.C. Woo, K.C. Lee, K.B. Choi, J.A. Kim, J.W. Kim, J. Kim, Design of the KRISS watt balance. Metrologia 51, S96–S100 (2014)

    Article  Google Scholar 

  30. M. Thomas, P. Espel, D. Ziane, P. Pinot, P. Juncar, F. Pereira Dos Santos, S. Merlet, F. Piquemal, G. Genevs, First determination of the Planck constant using the LNE watt balance. Metrologia 52, 433–443 (2015)

    Google Scholar 

  31. A. Eichenberger, H. Baumann, B. Jeanneret, B. Jeckelmann, P. Richard, W. Beer, Determination of the Planck constant with the METAS watt balance. Metrologia 48, 133–141 (2011)

    Article  ADS  Google Scholar 

  32. B.P. Kibble, I.A. Robinson, J.H. Belliss, A realisation of the SI watt by the NPL moving-coil balance. Metrologia 27, 173–192 (1990)

    Article  ADS  Google Scholar 

  33. C.A. Sanchez, B.M. Wood, R.G. Green, J.O. Liard, D. Inglis, Corrigendum to the 2014 NRC determination of Planck’s constant. Metrologia 52, L23 (2015)

    Google Scholar 

  34. Z. Zhang, Q. He, Z. Li, B. Han, Y. Lu, J. Lan, C. Li, S. Li, J. Xu, N. Wang, G. Wang, H. Gong, The joule balance in NIM of China. Metrologia 51, S25–S31 (2014)

    Article  Google Scholar 

  35. J. Xu, Z. Zhang, Z. Li, Y. Bai, G. Wang, S. Li, T. Zeng, C. Li, Y. Lu, B. Han, N. Wang, K. Zhou, A determination of the Planck constant by the generalized joule balance method with a permanent-magnet system at NIM. Metrologia 53, 86–97 (2016)

    Article  ADS  Google Scholar 

  36. P.T. Olsen, R.E. Elmquist, W.D. Phillips, E.R. Williams, G.R. Jones, V.E. Bower, A measurement of the NBS electrical watt in SI units. IEEE Trans. Instrum. Meas. 38, 238–244 (1989)

    Article  Google Scholar 

  37. E.R. Williams, R.L. Steiner, D.B. Newell, P.T. Olsen, Accurate measurement of the Planck constant. Phys. Rev. Lett. 81, 2404–2407 (1998)

    Article  ADS  Google Scholar 

  38. S. Schlamminger, R.L. Steiner, D. Haddad, D.B. Newell, F. Seifert, L.S. Chao, R. Liu, E.R. Williams, J.R. Pratt, A summary of the Planck constant measurements using a watt balance with a superconducting solenoid at NIST. Metrologia 52, L5–L8 (2015)

    Article  ADS  Google Scholar 

  39. D. Haddad, F. Seifert, L.S. Chao, S. Li, D.B. Newell, J.R. Pratt, C. Williams, S. Schlamminger, Invited article: a precise instrument to determine the Planck constant, and the future kilogram. Rev. Sci. Instrum. 87, 061301 (2016)

    Article  ADS  Google Scholar 

References (XRCD)

  1. A. Pramann, K.-S. Lee, J. Noordmann, O. Rienitz, Probing the homogeneity of the isotopic composition and molar mass of the ‘Avogadro’-crystal. Metrologia 52, 800–810 (2015)

    Google Scholar 

  2. S.V. Gupta, Practical density measurements and hydrometry (IOP, UK, 2002), P. 47

    Google Scholar 

  3. R.A. Niclaus, G. Bonch, A novel interferometer for dimensional measurements of a Silicon sphere. IEEE Trans. Instrum. Meas. 46, 54–56 (1997)

    Google Scholar 

  4. S. Zakel, S. Wundrack, H. Niemann, O. Rienitz, D. Schiel, Infrared spectrometric measurements of impurities in highly enriched ‘Si28’. Metrologia 48, S14–9 (2011)

    Google Scholar 

  5. G. D’Agostino, L. Bergamaschi, L. Giordani, G. Mana, M. Oddone, Elemental characterization of the Avogadro silicon crystal WASO 04 by neutron activation analysis. Metrologia 49, 696–670 1 (2012)

    Google Scholar 

  6. B. Andreas et al, Counting the atoms in a 28Si crystal for a new kilogram definition. Metrologia 48, S 1–13 (2011)

    Google Scholar 

  7. S. Mizushima, Determination of the amount of gas adsorption on SiO2/Si(1 0 0) surfaces to realize precise mass measurement. Metrologia 41, 137–144 (2004)

    Google Scholar 

  8. Y. Azuma et al, Improved measurement results for the Avogadro constant using a 28Si-enriched crystal. Metrologia 360–375 (2015)

    Google Scholar 

  9. O. Rienitz, A. Pramann, D. Schiel, Novel concept for the mass spectrometric determination of absolute isotopic abundances with improved measurement uncertainty: part 1—theoretical derivation and feasibility study. Int. J. Mass Spectrom. 289, 47–53 (2010)

    Article  Google Scholar 

  10. A. Pramann, O. Rienitz, D. Schiel, B. Güttler, S. Valkiers, Novel concept for the mass spectrometric determination of absolute isotopic abundances with improved measurement uncertainty: part 3—molar mass of silicon highly enriched in 28Si. Int. J. Mass Spectrom. 305, 58–68 (2011)

    Article  Google Scholar 

  11. A. Pramann, O. Rienitz, J. Noordmann, B. Güttler, D. Schiel, A more accurate molar mass of silicon via high resolution MC-ICP-mass spectrometry. Z. Phys. Chem. 228, 405–419 (2014)

    Article  Google Scholar 

  12. L. Yang, Z. Mester, R.E. Sturgeon, J. Meija, Determination of the atomic weight of 28Si-enriched silicon for a revised estimate of the Avogadro constant. Anal. Chem. 84, 2321–2327 (2012)

    Article  Google Scholar 

  13. T. Narukawa, A. Hioki, N. Kuramoto, K. Fujii, Molar-mass measurement of a 28Si-enriched silicon crystal for determination of the Avogadro constant. Metrologia 51, 161–168 (2014)

    Google Scholar 

  14. R.D. Vocke Jr., S.A. Rabb, G.C. Turk, Absolute silicon molar mass measurements, the Avogadro constant and the redefinition of the kilogram. Metrologia 51, 36 1–75 (2014)

    Google Scholar 

  15. T. Ren, J. Wang, T. Zhou, H. Lu, Y.-J. Zhou, J. Anal. At. Spectrom. 30, 2449–2458 (2015)

    Article  Google Scholar 

  16. E Massa, G Mana, U Kuetgens2, L Ferroglio, Measurement of the {2 2 0} lattice- plane spacing of a 28Si x-ray interferometer. Metrologia 48, S37–S43 (2011)

    Google Scholar 

  17. E. Massa, G. Mana, C.P. Sasso, C. Palmisano, A more accurate measurement of the 28Si lattice parameter. J. Phys. Chem. Ref. Data 44, 031208 (2015)

    Article  ADS  Google Scholar 

  18. E. Massa, G. Mana, E. Ferroglio, E.G. Kessler, D. Schiel, S. Zakel, The lattice parameter of the 28Si spheres in the determination of the Avogadro constant. Metrologia 48, S44–9 (2011)

    Google Scholar 

  19. U. Bonse, M. Hart, An x-ray interferometer. Appl. Phys. Lett. 6, 155–156 (1965)

    Article  ADS  Google Scholar 

  20. P. Becker, H. Bettin, L. Koenders, J. Martin, A. Nicolause, S. Rottger, The silicon path to the kilogram. PTB Mitteilungen 106, 321–329 (1996)

    Google Scholar 

  21. A. Bergamin, G. Cavagnero, G. Mana, Accuracy assessment of a least-squares estimator for scanning x-ray interferometry. Meas. Sci. Technol. 2, 725–734 (1991)

    Article  ADS  Google Scholar 

  22. B. Andreas et al, Counting the atoms in a 28Si crystal for a new kilogram definition. Metrologia 48, S1–13 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S. (2020). Realization of the SI Base Units (S, M, Kilogram). In: Units of Measurement. Springer Series in Materials Science, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-030-43969-9_6

Download citation

Publish with us

Policies and ethics