Skip to main content

Role of Nrf2 in Oxidative and Inflammatory Processes in Obesity and Metabolic Diseases

  • Chapter
  • First Online:
Nrf2 and its Modulation in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR,volume 85))

Abstract

Excessive fat accumulation in adipocytes leads to obesity, which is a major contributing risk factor for many metabolic diseases such as metabolic syndrome, type 2 diabetes, and cardiovascular diseases. A number of studies showed that overnutrition causes oxidative stress and chronic low-grade inflammation, which both play a crucial role both in obesity prevention and in the development of obesity-related complications. Adipose tissue, especially in the visceral compartment, is considered not only as an energy depository tissue, but also as an active endocrine organ releasing a variety of biologically active molecules known as adipokines, with many of them having pro-inflammatory properties. Here, we summarize current data on the relationship between oxidative stress and inflammation in obesity, with emphasis on metabolic switches and the involvement of redox-responsive signaling pathways such as NF-κB and Nfr2. Experimental data suggest the dual role of Nrf2 signaling in prevention and aggravation of obesity and obesity-related inflammation; the potential mechanisms of Nrf2 duality are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGEs:

Advanced glycation end products

BAT:

Brown adipose tissue

BMI:

Body mass index

CEBPβ:

CCAAT/enhancer-binding protein β

ETC :

Electron transport chain

FFAs:

Free fatty acids

FoxO :

Forkhead box O family of proteins

GSK3:

Glycogen synthase kinase 3

HO-1:

Heme oxygenase-1

IL:

Interleukin

Keap1:

Kelch-like ECH-associated protein (Nrf2 repressor protein)

Keap1-KO:

Keap1 knock-out

LDL :

Low-density lipoprotein

LPS :

Lipopolysaccharide

MCP-1:

Monocyte chemoattractant protein

MetS:

Metabolic syndrome

Neh :

Nrf2-ECH homology functional domains of nuclear-related factor 2

NF-κB :

Nuclear factor-κB

NOX :

NADPH oxidase

Nrf2:

Nuclear-related factor 2

Nrf2-KO:

Nrf2 knock-out

PAI-1:

Plasminogen activator inhibitor

PPARγ :

Peroxisome proliferator-activated receptor γ

RCS :

Reactive carbonyl species

ROS :

Reactive oxygen species

TAG:

Triacylglycerides

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor alpha

WAT:

White adipose tissue

β-TrCP:

β-transducin repeat-containing protein

References

  1. Catrysse L, Van LG. Inflammation and the metabolic syndrome: the tissue-specific functions of NF-kB. Trends Cell Biol. 2017;27:417–29.

    Article  CAS  PubMed  Google Scholar 

  2. WHO Global Health Observatory Data Repository. Geneva, World Health Organization, http://apps.who.int/gho/data/view.main. Accessed 21 May 2015.

  3. Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci. 2013;14:10497–538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Nikolopoulou A, Kadoglou NPE. Obesity and metabolic syndrome as related to cardiovascular disease. Expert Rev Cardiovasc Ther. 2012;10:933–9.

    Article  CAS  PubMed  Google Scholar 

  5. Bayliak MM, Abrat OB, Storey JM, Storey KB, Lushchak VI. Interplay between diet-induced obesity and oxidative stress: comparison between Drosophila and mammals. Comp Biochem Physiol Part A Mol Integr Physiol. 2019;228:18–28.

    Article  CAS  Google Scholar 

  6. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92:347–55.

    Article  CAS  PubMed  Google Scholar 

  7. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González Á, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G, Valadez-Vega C, Morales-González JA. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12:3117–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013;2013:1–12.

    Article  CAS  Google Scholar 

  9. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9:191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muñoz A, Costa M. Nutritionally mediated oxidative stress and inflammation. Oxidative Med Cell Longev. 2013;2013:610950.

    Article  CAS  Google Scholar 

  11. Castro AM, Macedo-de la Concha LE, Pantoja-Meléndez CA. Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Rev Médica del Hosp Gen México. 2017;80:101–5.

    Article  Google Scholar 

  12. Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7:1–12.

    Article  Google Scholar 

  13. Drehmer DL, de Aguiar AM, Brandt AP, Petiz L, Cadena SMSC, Rebelatto CK, Brofman PRS, Filipak Neto F, Dallagiovanna B, Abud APR. Metabolic switches during the first steps of adipogenic stem cells differentiation. Stem Cell Res. 2016;17:413–21.

    Article  CAS  PubMed  Google Scholar 

  14. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bryan S, Baregzay B, Spicer D, Singal PK, Khaper N. Redox-inflammatory synergy in the metabolic syndrome. Can J Physiol Pharmacol. 2013;91:22–30.

    Article  CAS  PubMed  Google Scholar 

  16. Seo H-A, Lee I-K. The role of Nrf2: adipocyte differentiation, obesity, and insulin resistance. Oxidative Med Cell Longev. 2013;2013:184598.

    Article  CAS  Google Scholar 

  17. Zhang Z, Zhou S, Jiang X, Wang Y-H, Li F, Wang Y-G, Zheng Y, Cai L. The role of the Nrf2/Keap1 pathway in obesity and metabolic syndrome. Rev Endocr Metab Disord. 2015;16:35–45.

    Article  CAS  PubMed  Google Scholar 

  18. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39:199–218.

    Article  CAS  PubMed  Google Scholar 

  19. Chartoumpekis DV, Kensler TW. New player on an old field; the Keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome. Curr Diabetes Rev. 2013;9:137–45.

    PubMed  PubMed Central  Google Scholar 

  20. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol basis Dis. 2017;1863:585–97.

    Article  CAS  PubMed  Google Scholar 

  21. Luo D, Guo Y, Cheng Y, Zhao J, Wang Y, Rong J. Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-kappaB pathways. Aging (Albany NY). 2017;9:2069–82.

    Article  CAS  Google Scholar 

  22. Lampiasi N, Montana G. An in vitro inflammation model to study the Nrf2 and NF-kappaB crosstalk in presence of ferulic acid as modulator. Immunobiology. 2018;223:349–55.

    Article  CAS  PubMed  Google Scholar 

  23. Saklayen MG. Hypertension and obesity the global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;9:1–8.

    Google Scholar 

  24. Dereń K, Nyankovskyy S, Nyankovska O, Łu E (2018) The prevalence of underweight, overweight and obesity in children and adolescents from Ukraine. 1–7

    Google Scholar 

  25. Heerwagen MJR, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol. 2010;299:R711–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vaiserman A, Koliada A, Lushchak O. Developmental programming of aging trajectory. Ageing Res Rev. 2018;47:105–22.

    Article  PubMed  Google Scholar 

  27. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol. 2006;26:968–76.

    Article  CAS  PubMed  Google Scholar 

  28. Kylin E. Studien ueber das Hypertonie-Hyperglyka" mie-Hyperurika" miesyndrom. Zentralblatt fuer Inn Medizin. 1923;44:105–27.

    Google Scholar 

  29. Vague J. La differentiation sexuelle facteur determinant des formes de l’obesite. Presse Med. 1947;30:339–40.

    Google Scholar 

  30. Kopelman PG. Obesity as a medical problem. Nature. 2000;404:635–43.

    Article  CAS  PubMed  Google Scholar 

  31. Simon GE, Von Korff M, Saunders K, Miglioretti DL, Crane PK, Van Belle G, Kessler RC. Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry. 2006;63:824–30.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ferrannini E. Metabolic syndrome: a solution in search of a problem. J Clin Endocrinol Metab. 2007;92:396–8.

    Article  CAS  PubMed  Google Scholar 

  33. Bruce KD, Hanson MA. The developmental origins, mechanisms, and implications of metabolic syndrome. J Nutr. 2010;140:648–52.

    Article  CAS  PubMed  Google Scholar 

  34. Palaniappan LP, Wong EC, Shin JJ, Fortmann SP, Lauderdale DS. Asian Americans have greater prevalence of metabolic syndrome despite lower body mass index. Int J Obes. 2011;35:393–400.

    Article  CAS  Google Scholar 

  35. Van Eenige R, van der Stelt M, Rensen PCN, Kooijman S. Regulation of adipose tissue metabolism by the endocannabinoid system. Trends Endocrinol Metab. 2018;29:326–37.

    Article  PubMed  CAS  Google Scholar 

  36. Gustafson B. Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb. 2010;17:332–41.

    Article  CAS  PubMed  Google Scholar 

  37. Baer PC. Adipose-derived stem cells and their potential to differentiate into the epithelial lineage. Stem Cells Dev. 2011;20:1805–16.

    Article  CAS  PubMed  Google Scholar 

  38. Smith U, Kahn BB. Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med. 2016;280:465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gastaldelli A, Gaggini M, DeFronzo RA. Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio metabolism study. Diabetes. 2017;66:815–22.

    Article  PubMed  CAS  Google Scholar 

  40. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46:3–10.

    Article  CAS  PubMed  Google Scholar 

  41. Morigny P, Houssier M, Mouisel E, Langin D. Adipocyte lipolysis and insulin resistance. Biochimie. 2016;125:259–66.

    Article  CAS  PubMed  Google Scholar 

  42. Kahn BB, Flier JS. Obesity and insulin resistance find the latest version: obesity and insulin resistance. J Clin Invest. 2000;106:473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.

    Article  CAS  PubMed  Google Scholar 

  44. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–80.

    Article  PubMed  CAS  Google Scholar 

  45. Bastien M, Poirier P, Lemieux I, Després JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56:369–81.

    Article  PubMed  Google Scholar 

  46. Compher C, Badellino KO. Obesity and inflammation: lessons from bariatric surgery. J Parenter Enter Nutr. 2008;32:645–7.

    Article  Google Scholar 

  47. Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K. Systematic review of metabolic syndrome biomarkers: a panel for early detection, management, and risk stratification in the west virginian population. Int J Med Sci. 2016;13:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Itoh M, Suganami T, Hachiya R, Ogawa Y. Adipose tissue remodeling as homeostatic inflammation. Int J Inflam. 2011;2011:1–8.

    Google Scholar 

  49. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316:129–39.

    Article  CAS  PubMed  Google Scholar 

  50. Lee SW, Jo HH, Kim MR, You YO, Kim JH. Association between metabolic syndrome and serum leptin levels in postmenopausal women. J Obstet Gynaecol. 2012;32:73–7.

    Article  CAS  PubMed  Google Scholar 

  51. Yun JE, Kimm H, Jo J, Jee SH. Serum leptin is associated with metabolic syndrome in obese and nonobese Korean populations. Metabolism. 2010;59:424–9.

    Article  CAS  PubMed  Google Scholar 

  52. Laclaustra M, Corella D, Ordovas JM. Metabolic syndrome pathophysiology: the role of adipose tissue. Nutr Metab Cardiovasc Dis. 2007;17:125–39.

    Article  CAS  PubMed  Google Scholar 

  53. Kaser S, Tatarczyk T, Stadlmayr A, Ciardi C, Ress C, Tschoner A, Sandhofer A, Paulweber B, Ebenbichler CF, Patsch JR. Effect of obesity and insulin sensitivity on adiponectin isoform distribution. Eur J Clin Investig. 2008;38:827–34.

    Article  CAS  Google Scholar 

  54. Yamauchi T, Iwabu M, Okada-Iwabu M, Kadowaki T. Adiponectin receptors: a review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab. 2014;28:15–23.

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka T, Narazaki M, Kishimoto T. IL-6 in immunity, inflammation, disease. Cold Spring Harb Perspect Biol. 2014;6:16295–6.

    Article  Google Scholar 

  56. Pal M, Febbraio MA, Whitham M. From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol Cell Biol. 2014;92:331–9.

    Article  CAS  PubMed  Google Scholar 

  57. Skurk T, Hauner H. Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes. 2004;28:1357–64.

    Article  CAS  Google Scholar 

  58. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa KI, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116:1494–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Panee J. Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes. Cytokine. 2012;60:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gotoh K, Inoue M, Masaki T, et al. A novel anti-inflammatory role for spleen-derived interleukin-10 in obesity-induced inflammation in white adipose tissue and liver. Diabetes. 2012;61:1994–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gormez S, Demirkan A, Atalar F, Caynak B, Erdim R, Sozer V, Gunay D, Akpinar B, Ozbek U, Buyukdevrim AS. Adipose tissue gene expression of adiponectin, tumor necrosis factor-α and leptin in metabolic syndrome patients with coronary artery disease. Intern Med. 2011;50:805–10.

    Article  CAS  PubMed  Google Scholar 

  62. Kosteli A, Zechner R, Ferrante AW Jr, Sugaru E, Haemmerle G, Martin JF, Lei J. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest. 2010;120:3466–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Castoldi A, De Souza CN, Saraiva Câmara NO, Moraes-Vieira PM. The macrophage switch in obesity development. Front Immunol. 2016;6:1–11.

    Article  CAS  Google Scholar 

  64. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol. 2009;9:259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.

    Article  CAS  PubMed  Google Scholar 

  66. Moraes-Vieira PM, Yore MM, Dwyer PM, Syed I, Aryal P, Kahn BB. RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metab. 2014;19:512–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2014;177:7303–11.

    Article  Google Scholar 

  68. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229:176–85.

    Article  CAS  PubMed  Google Scholar 

  69. Surmi BK, Hasty AH. Macrophage infiltration into adipose tissue: initiation, propagation and remodeling. Future Lipidol. 2008;3:545–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carrillo JLM, Campo, JOM, Coronado OGC, Gutiérrez PTV, Cordero FC, Juárez JV (2018) Adipose tissue and inflammation IntechOpen. https://doi.org/10.5772/intechopen.74227

  71. Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2015;16:378–400.

    Article  CAS  Google Scholar 

  72. Alcalá M, Calderon-Dominguez M, Bustos E, Ramos P, Casals N, Serra D, Viana M, Herrero L. Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Sci Rep. 2017;7:1–12.

    Article  CAS  Google Scholar 

  73. Amirkhizi F, Siassi F, Djalali M, Hamedi S. Impaired enzymatic antioxidant defense in erythrocytes of women with general and abdominal obesity. Obes Res Clin Pract. 2014;8:e26–34.

    Article  PubMed  Google Scholar 

  74. Brown LA, Kerr CJ, Whiting P, Finer N, McEneny J, Ashton T. Oxidant stress in healthy normal-weight, overweight, and obese individuals. Obesity (Silver Spring). 2009;17:460–6.

    Article  CAS  Google Scholar 

  75. D’Archivio M, Annuzzi G, Vari R, Filesi C, Giacco R, Scazzocchio B, Santangelo C, Giovannini C, Rivellese AA, Masella R. Predominant role of obesity/insulin resistance in oxidative stress development. Eur J Clin Investig. 2012;42:70–8.

    Article  CAS  Google Scholar 

  76. Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, Ota T, Yokoyama M, Honda M, Ichi MK, Kaneko S. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism. 2008;57:1071–7.

    Article  CAS  PubMed  Google Scholar 

  77. Masania J, Malczewska-Malec M, Razny U, Goralska J, Zdzienicka A, Kiec-Wilk B, Gruca A, Stancel-Mozwillo J, Dembinska-Kiec A, Rabbani N, Thornalley PJ. Dicarbonyl stress in clinical obesity. Glycoconj J. 2016;33:581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Semchyshyn H. Is part of the fructose effects on health related to increased AGE formation? In: Uribarry J, editor. Dietary AGEs and their role in health and disease. Boca Raton: CRC Press; 2017. p. 119–28.

    Google Scholar 

  79. Tinahones FJ, Murri-Pierri M, Garrido-Sánchez L, García-Almeida JM, García-Serrano S, García-Arnés J, García-Fuentes E. Oxidative stress in severely obese persons is greater in those with insulin resistance. Obesity. 2009;17:240–6.

    Article  CAS  PubMed  Google Scholar 

  80. Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, Szalai G, Sonntag WE, Ungvari Z, Csiszar A. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol A Biol Sci Med Sci. 2014;69:1212–26.

    Article  CAS  PubMed  Google Scholar 

  81. Tarantini S, Valcarcel-Ares MN, Yabluchanskiy A, Tucsek Z, Hertelendy P, Kiss T, Gautam T, Zhang XA, Sonntag WE, de Cabo R, Farkas E, Elliott MH, Kinter MT, Deak F, Ungvari Z, Csiszar A. Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood-brain barrier disruption, neuroinflammation, amyloidogenic gene expression, and cognitive decline in mice, mimicking the aging phenotype. J Gerontol A Biol Sci Med Sci. 2018;73:853–63.

    Article  CAS  PubMed  Google Scholar 

  82. Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci. 2016;148:183–93.

    Article  CAS  PubMed  Google Scholar 

  83. Schneider KS, Chan JY. Emerging role of Nrf2 in adipocytes and adipose biology. Adv Nutr. 2013;4:62–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pihl E, Zilmer K, Kullisaar T, Kairane C, Magi A, Zilmer M. Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes. Int J Obes. 2006;30:141–6.

    Article  CAS  Google Scholar 

  85. Chrysohoou C, Panagiotakos DB, Pitsavos C, Skoumas I, Papademetriou L, Economou M, Stefanadis C. The implication of obesity on total antioxidant capacity in apparently healthy men and women: the ATTICA study. Nutr Metab Cardiovasc Dis. 2007;17:590–7.

    Article  PubMed  Google Scholar 

  86. Rovenko BM, Kubrak OI, Gospodaryov DV, Perkhulyn NV, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J Insect Physiol. 2015;79:42–54.

    Article  CAS  PubMed  Google Scholar 

  87. Rovenko BM, Kubrak OI, Gospodaryov DV, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. Restriction of glucose and fructose causes mild oxidative stress independently of mitochondrial activity and reactive oxygen species in Drosophila melanogaster. Comp Biochem Physiol Part A Mol Integr Physiol. 2015;187:27–39.

    Article  CAS  Google Scholar 

  88. Rovenko BM, Perkhulyn NV, Gospodaryov DV, Sanz A, Lushchak OV, Lushchak VI. High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comp Biochem Physiol Part A Mol Integr Physiol. 2015;180:75–85.

    Article  CAS  Google Scholar 

  89. Bray GA, Champagne CM. Beyond energy balance: there is more to obesity than kilocalories. J Am Diet Assoc. 2005;105:17–23.

    Article  Google Scholar 

  90. Garaschuk O, Semchyshyn HM, Lushchak VI. Healthy brain aging: interplay between reactive species, inflammation and energy supply. Ageing Res Rev. 2018;43:26–45.

    Article  CAS  PubMed  Google Scholar 

  91. Lushchak VI. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol Part C Toxicol Pharmacol. 2011;153:175–90.

    Article  CAS  Google Scholar 

  92. Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014;224:164–75.

    Article  CAS  PubMed  Google Scholar 

  93. Semchyshyn HM. Reactive carbonyl species in vivo: generation and dual biological effects. ScientificWorldJournal. 2014;2014:417842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Vankoningsloo S, Piens M, Lecocq C, Gilson A, De Pauw A, Renard P, Demazy C, Houbion A, Raes M, Arnould T. Mitochondrial dysfunction induces triglyceride accumulation in 3T3-L1 cells: role of fatty acid beta-oxidation and glucose. J Lipid Res. 2005;46:1133–49.

    Article  CAS  PubMed  Google Scholar 

  95. Den Hartigh LJ, Omer M, Goodspeed L, Wang S, Wietecha T, O’Brien KD, Han CY. Adipocyte-specific deficiency of NADPH-oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity. Arterioscler Thromb Vasc Biol. 2017;37:466–75.

    Article  CAS  Google Scholar 

  96. Han CY, Umemoto T, Omer M, Den Hartigh LJ, Chiba T, Leboeuf R, Buller CL, Sweet IR, Pennathur S, Abel ED, Chait A. NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes. J Biol Chem. 2012;287:10379–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cleary MP, Zisk JF. Anti-obesity effect of two different levels of dehydroepiandrosterone in lean and obese middle-aged female Zucker rats. Int J Obes. 1986;10:193–204.

    CAS  PubMed  Google Scholar 

  98. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939–45.

    Article  CAS  PubMed  Google Scholar 

  99. Moraru A, Wiederstein J, Pfaff D, Fleming T, Miller AK, Nawroth P, Teleman AA. Elevated levels of the reactive metabolite methylglyoxal recapitulate progression of type 2 diabetes. Cell Metab. 2018;27:926–934.e8.

    Article  CAS  PubMed  Google Scholar 

  100. Semchyshyn HM. Fructation in vivo: detrimental and protective effects of fructose. Biomed Res Int. 2013;2013:343914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Semchyshyn HM, Lozinska LM, Miedzobrodzki J, Lushchak VI. Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells. Carbohydr Res. 2011;346:933–8.

    Article  CAS  PubMed  Google Scholar 

  102. Semchyshyn HM, Miedzobrodzki J, Bayliak MM, Lozinska LM, Homza BV. Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: potential role of antioxidant and antiglycation enzymes. Carbohydr Res. 2014;384:61–9.

    Article  CAS  PubMed  Google Scholar 

  103. Drougard A, Fournel A, Valet P, Knauf C. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Front Neurosci. 2015;9:56–61.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lee H, Lee YJ, Choi H, Ko EH, Kim J-W. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem. 2009;284:10601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kanda Y, Hinata T, Kang SW, Watanabe Y. Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci. 2011;89:250–8.

    Article  CAS  PubMed  Google Scholar 

  106. Turker I, Zhang Y, Zhang Y, Rehman J. Oxidative stress as a regulator of adipogenesis. FASEB J. 2007;21:A1053.

    Google Scholar 

  107. Schröder K, Wandzioch K, Helmcke I, Brandes RP. Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol. 2009;29:239–45.

    Article  PubMed  CAS  Google Scholar 

  108. Li Y, Mouche S, Sajic T, Veyrat-Durebex C, Supale R, Pierroz D, Ferrari S, Negro F, Hasler U, Feraille E, Moll S, Meda P, Deffert C, Montet X, Krause K-H, Szanto I. Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity. Int J Obes. 2012;36:1503–13.

    Article  CAS  Google Scholar 

  109. De Pauw A, Tejerina S, Raes M, Keijer J, Arnould T. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. Am J Pathol. 2009;175:927–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol. 2017;37:35–40.

    Article  CAS  PubMed  Google Scholar 

  111. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    Article  CAS  PubMed  Google Scholar 

  112. Wolowczuk I, Verwaerde C, Viltart O, Delanoye A, Delacre M, Pot B, Grangette C. Feeding our immune system: impact on metabolism. Clin Dev Immunol. 2008;2008:639803.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Monteiro R, Azevedo I (2010) Chronic inflammation in obesity and the metabolic syndrome. Mediat Inflamm. pii:289645 https://doi.org/10.1155/2010/289645.

  114. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21:1443–55.

    Article  CAS  PubMed  Google Scholar 

  115. Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol. 2015;6:51–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nakae J, Cao Y, Oki M, Orba Y, Sawa H, Kiyonari H, Iskandar K, Suga K, Lombes M, Hayashi Y. Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes. 2008;57:563–76.

    Article  CAS  PubMed  Google Scholar 

  117. Pitoniak A, Bohmann D. Mechanisms and functions of Nrf2 signaling in Drosophila. Free Radic Biol Med. 2015;88:302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Silva-Islas CA, Maldonado PD. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res. 2018;134:92–9.

    Article  CAS  PubMed  Google Scholar 

  119. Canning P, Sorrell FJ, Bullock AN. Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med. 2015;88:101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Abed DA, Goldstein M, Albanyan H, Jin H, Hu L. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents. Acta Pharm Sin B. 2015;5:285–99.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med. 2015;88:108–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Huang Y, Li W, Su Z, Kong A-NT. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem. 2015;26:1401–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015;88:179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kwak M-K, Itoh K, Yamamoto M, Kensler TW. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol. 2002;22:2883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cho H-Y, Gladwell W, Wang X, Chorley B, Bell D, Reddy SP, Kleeberger SR. Nrf2-regulated PPAR{gamma} expression is critical to protection against acute lung injury in mice. Am J Respir Crit Care Med. 2010;182:170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, MacEwan DJ. The high Nrf2 expression in human acute myeloid leukemia is driven by NF-kappaB and underlies its chemo-resistance. Blood. 2012;120:5188–98.

    Article  CAS  PubMed  Google Scholar 

  127. Kurinna S, Werner S. NRF2 and microRNAs: new but awaited relations. Biochem Soc Trans. 2015;43:595–601.

    Article  CAS  PubMed  Google Scholar 

  128. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kobayashi A, Kang M-I, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24:7130–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Villeneuve NF, Lau A, Zhang DD. Regulation of the Nrf2–Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal. 2010;13:1699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells. 2001;6:857–68.

    Article  CAS  PubMed  Google Scholar 

  133. Li W, Yu S-W, Kong A-NT. Nrf2 possesses a redox-sensitive nuclear exporting signal in the Neh5 transactivation domain. J Biol Chem. 2006;281:27251–63.

    Article  CAS  PubMed  Google Scholar 

  134. Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, Hayes JD. Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene. 2013;32:3765–81.

    Article  CAS  PubMed  Google Scholar 

  135. Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol. 2011;31:1121–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pearl LH, Barford D. Regulation of protein kinases in insulin, growth factor and Wnt signalling. Curr Opin Struct Biol. 2002;12:761–7.

    Article  CAS  PubMed  Google Scholar 

  137. Lee J-M, Calkins MJ, Chan K, Kan YW, Johnson JA. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem. 2003;278:12029–38.

    Article  CAS  PubMed  Google Scholar 

  138. Malhotra D, Portales-Casamar E, Singh A, Srivastava S, Arenillas D, Happel C, Shyr C, Wakabayashi N, Kensler TW, Wasserman WW, Biswal S. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 2010;38:5718–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Walsh J, Jenkins RE, Wong M, Olayanju A, Powell H, Copple I, O’Neill PM, Goldring CEP, Kitteringham NR, Park BK. Identification and quantification of the basal and inducible Nrf2-dependent proteomes in mouse liver: biochemical, pharmacological and toxicological implications. J Proteome. 2014;108:171–87.

    Article  CAS  Google Scholar 

  140. Wu KC, Cui JY, Klaassen CD. Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol Sci. 2011;123:590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kitteringham NR, Abdullah A, Walsh J, Randle L, Jenkins RE, Sison R, Goldring CEP, Powell H, Sanderson C, Williams S, Higgins L, Yamamoto M, Hayes J, Park BK. Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary Nrf2-dependent pathways in the liver. J Proteome. 2010;73:1612–31.

    Article  CAS  Google Scholar 

  142. Xue P, Hou Y, Chen Y, Yang B, Fu J, Zheng H, Yarborough K, Woods CG, Liu D, Yamamoto M, Zhang Q, Andersen ME, Pi J. Adipose deficiency of Nrf2 in Ob/Ob mice results in severe metabolic syndrome. Diabetes. 2013;62:845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T, O’Connor T, Harada T, Yamamoto M. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci. 2001;59:169–77.

    Article  CAS  PubMed  Google Scholar 

  144. Randle LE, Goldring CEP, Benson CA, Metcalfe PN, Kitteringham NR, Park BK, Williams DP. Investigation of the effect of a panel of model hepatotoxins on the Nrf2-Keap1 defence response pathway in CD-1 mice. Toxicology. 2008;243:249–60.

    Article  CAS  PubMed  Google Scholar 

  145. Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, Yamamoto M, Kensler TW, Tuder RM, Georas SN, Biswal S. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med. 2005;202:47–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tanaka Y, Aleksunes LM, Yeager RL, Gyamfi MA, Esterly N, Guo GL, Klaassen CD. NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a high-fat diet. J Pharmacol Exp Ther. 2008;325:655–64.

    Article  CAS  PubMed  Google Scholar 

  147. Pi J, Leung L, Xue P, Wang W, Hou Y, Liu D, Yehuda-Shnaidman E, Lee C, Lau J, Kurtz TW, Chan JY. Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J Biol Chem. 2010;285:9292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim B-R, Lee GY, Yu H, Maeng HJ, Oh TJ, Kim KM, Moon JH, Lim S, Jang HC, Choi SH. Suppression of Nrf2 attenuates adipogenesis and decreases FGF21 expression through PPAR gamma in 3T3-L1 cells. Biochem Biophys Res Commun. 2018;497:1149–53.

    Article  CAS  PubMed  Google Scholar 

  149. Xu J, Donepudi AC, More VR, Kulkarni SR, Li L, Guo L, Yan B, Chatterjee T, Weintraub N, Slitt AL. Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice. Obesity (Silver Spring). 2015;23:335–44.

    Article  CAS  Google Scholar 

  150. More VR, Xu J, Shimpi PC, Belgrave C, Luyendyk JP, Yamamoto M, Slitt AL. Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding. Free Radic Biol Med. 2013;61:85–94.

    Article  CAS  PubMed  Google Scholar 

  151. Zhang L, Dasuri K, Fernandez-Kim S-O, Bruce-Keller AJ, Keller JN. Adipose-specific ablation of Nrf2 transiently delayed high-fat diet-induced obesity by altering glucose, lipid and energy metabolism of male mice. Am J Transl Res. 2016;8:5309–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Shin S, Wakabayashi N, Misra V, Biswal S, Lee GH, Agoston ES, Yamamoto M, Kensler TW. NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol Cell Biol. 2007;27:7188–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Xu J, Kulkarni SR, Donepudi AC, More VR, Slitt AL. Enhanced Nrf2 activity worsens insulin resistance, impairs lipid accumulation in adipose tissue, and increases hepatic steatosis in leptin-deficient mice. Diabetes. 2012;61:3208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Uruno A, Furusawa Y, Yagishita Y, Fukutomi T, Muramatsu H, Negishi T, Sugawara A, Kensler TW, Yamamoto M. The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol Cell Biol. 2013;33:2996–3010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Slocum SL, Skoko JJ, Wakabayashi N, Aja S, Yamamoto M, Kensler TW, Chartoumpekis DV. Keap1/Nrf2 pathway activation leads to a repressed hepatic gluconeogenic and lipogenic program in mice on a high-fat diet. Arch Biochem Biophys. 2016;591:57–65.

    Article  CAS  PubMed  Google Scholar 

  156. Sampath C, Rashid MR, Sang S, Ahmedna M. Specific bioactive compounds in ginger and apple alleviate hyperglycemia in mice with high fat diet-induced obesity via Nrf2 mediated pathway. Food Chem. 2017;226:79–88.

    Article  CAS  PubMed  Google Scholar 

  157. Chartoumpekis DV, Palliyaguru DL, Wakabayashi N, Fazzari M, Khoo NKH, Schopfer FJ, Sipula I, Yagishita Y, Michalopoulos GK, O’Doherty RM, Kensler TW. Nrf2 deletion from adipocytes, but not hepatocytes, potentiates systemic metabolic dysfunction after long-term high-fat diet-induced obesity in mice. Am J Physiol Endocrinol Metab. 2018;315:E180–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. He H-J, Wang G-Y, Gao Y, Ling W-H, Yu Z-W, Jin T-R. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes. 2012;3:94–104.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Yu Z, Shao W, Chiang Y, Foltz W, Zhang Z, Ling W, Fantus IG, Jin T. Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2 [corrected](NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia. 2011;54:922–34.

    Article  CAS  PubMed  Google Scholar 

  160. Tuzcu Z, Orhan C, Sahin N, Juturu V, Sahin K. Cinnamon polyphenol extract inhibits hyperlipidemia and inflammation by modulation of transcription factors in high-fat diet-fed rats. Oxidative Med Cell Longev. 2017;2017:1583098.

    Article  CAS  Google Scholar 

  161. Meakin PJ, Chowdhry S, Sharma RS, Ashford FB, Walsh SV, McCrimmon RJ, Dinkova-Kostova AT, Dillon JF, Hayes JD, Ashford MLJ. Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol Cell Biol. 2014;34:3305–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, Biswal S. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest. 2006;116:984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wahli W, Michalik L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab. 2012;23:351–63.

    Article  CAS  PubMed  Google Scholar 

  164. Yuan X, Huang H, Huang Y, Wang J, Yan J, Ding L, Zhang C, Zhang L. Nuclear factor E2-related factor 2 knockdown enhances glucose uptake and alters glucose metabolism in AML12 hepatocytes. Exp Biol Med (Maywood). 2017;242:930–8.

    Article  CAS  Google Scholar 

  165. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T, Motohashi H, Nakayama K, Yamamoto M. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Collins AR, Gupte AA, Ji R, Ramirez MR, Minze LJ, Liu JZ, Arredondo M, Ren Y, Deng T, Wang J, Lyon CJ, Hsueh WA. Myeloid deletion of nuclear factor erythroid 2-related factor 2 increases atherosclerosis and liver injury. Arterioscler Thromb Vasc Biol. 2012;32:2839–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ding L, Yuan X, Yan J, Huang Y, Xu M, Yang Z, Yang N, Wang M, Zhang C, Zhang L. Nrf2 exerts mixed inflammation and glucose metabolism regulatory effects on murine RAW264.7 macrophages. Int Immunopharmacol. 2019;71:198–204.

    Article  CAS  PubMed  Google Scholar 

  168. Sussan TE, Jun J, Thimmulappa R, Bedja D, Antero M, Gabrielson KL, Polotsky VY, Biswal S. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice. PLoS One. 2008;3:e3791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Chartoumpekis DV, Ziros PG, Psyrogiannis AI, Papavassiliou AG, Kyriazopoulou VE, Sykiotis GP, Habeos IG. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice. Diabetes. 2011;60:2465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Xu L, Nagata N, Ota T. Glucoraphanin: a broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocytes. 2018;7:218–25.

    Article  CAS  Google Scholar 

  171. Gerstgrasser A, Melhem H, Leonardi I, Atrott K, Schafer M, Werner S, Rogler G, Frey-Wagner I. Cell-specific activation of the Nrf2 antioxidant pathway increases mucosal inflammation in acute but not in chronic colitis. J Crohns Colitis. 2017;11:485–99.

    PubMed  Google Scholar 

  172. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73:3221–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kim C-S, Choi H-S, Joe Y, Chung HT, Yu R. Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching. Nutr Res Pract. 2016;10:623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Osburn WO, Karim B, Dolan PM, Liu G, Yamamoto M, Huso DL, Kensler TW. Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int J Cancer. 2007;121:1883–91.

    Article  CAS  PubMed  Google Scholar 

  175. Jiang T, Tian F, Zheng H, Whitman SA, Lin Y, Zhang Z, Zhang N, Zhang DD. Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-kappaB-mediated inflammatory response. Kidney Int. 2014;85:333–43.

    Article  CAS  PubMed  Google Scholar 

  176. Bellezza I, Tucci A, Galli F, Grottelli S, Mierla AL, Pilolli F, Minelli A. Inhibition of NF-kappaB nuclear translocation via HO-1 activation underlies alpha-tocopheryl succinate toxicity. J Nutr Biochem. 2012;23:1583–91.

    Article  CAS  PubMed  Google Scholar 

  177. Illesca P, Valenzuela R, Espinosa A, Echeverria F, Soto-Alarcon S, Ortiz M, Videla LA. Hydroxytyrosol supplementation ameliorates the metabolic disturbances in white adipose tissue from mice fed a high-fat diet through recovery of transcription factors Nrf2, SREBP-1c, PPAR-gamma and NF-kappaB. Biomed Pharmacother. 2019;109:2472–81.

    Article  CAS  PubMed  Google Scholar 

  178. Walls HL, Backholer K, Proietto J, McNeil JJ. Obesity and trends in life expectancy. J Obes. 2012;2012:107989.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was partially supported by the Ministry of Education and Science of Ukraine (#0118 U00347).

Conflicts of Interest: The authors declare that there are no conflicts of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayliak, M.M., Abrat, O.B. (2020). Role of Nrf2 in Oxidative and Inflammatory Processes in Obesity and Metabolic Diseases. In: Deng, H. (eds) Nrf2 and its Modulation in Inflammation. Progress in Inflammation Research, vol 85. Springer, Cham. https://doi.org/10.1007/978-3-030-44599-7_7

Download citation

Publish with us

Policies and ethics