Skip to main content

Supervised Adversarial Alignment of Single-Cell RNA-seq Data

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12074))

Abstract

Dimensionality reduction is an important first step in the analysis of single cell RNA-seq (scRNA-seq) data. In addition to enabling the visualization of the profiled cells, such representations are used by many downstream analyses methods ranging from pseudo-time reconstruction to clustering to alignment of scRNA-seq data from different experiments, platforms, and labs. Both supervised and unsupervised methods have been proposed to reduce the dimension of scRNA-seq. However, all methods to date are sensitive to batch effects. When batches correlate with cell types, as is often the case, their impact can lead to representations that are batch rather than cell type specific. To overcome this we developed a domain adversarial neural network model for learning a reduced dimension representation of scRNA-seq data. The adversarial model tries to simultaneously optimize two objectives. The first is the accuracy of cell type assignment and the second is the inability to distinguish the batch (domain). We tested the method by using the resulting representation to align several different datasets. As we show, by overcoming batch effects our method was able to correctly separate cell types, improving on several prior methods suggested for this task. Analysis of the top features used by the network indicates that by taking the batch impact into account, the reduced representation is much better able to focus on key genes for each cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://scquery.cs.cmu.edu/processed_data/.

References

  1. Inazu, A.: Plasma cholesteryl ester transfer protein (CETP) in relation to human pathophysiology (Chap. 3). In: Komoda, T. (ed.) The HDL Handbook, pp. 35–59. Academic Press, Boston (2010)

    Chapter  Google Scholar 

  2. Integration and label transfer - standard workflow, October 2019. https://satijalab.org/seurat/v3.1/integration.html#standard-workflow

  3. Alavi, A., Ruffalo, M., Parvangada, A., Huang, Z., Bar-Joseph, Z.: A web server for comparative analysis of single-cell RNA-seq data. Nat. Commun. 9(1), 4768 (2018)

    Article  Google Scholar 

  4. Chu, C., Wang, R.: A survey of domain adaptation for neural machine translation. arXiv preprint arXiv:1806.00258 (2018)

  5. Csurka, G.: Domain adaptation for visual applications: a comprehensive survey. arXiv preprint arXiv:1702.05374 (2017)

  6. Ding, J., et al.: Systematic comparative analysis of single cell RNA-seq methods. BioRxiv, p. 632216 (2019)

    Google Scholar 

  7. Domingo-Espín, J., Nilsson, O., Bernfur, K., Giudice, R.D., Lagerstedt, J.O.: Site-specific glycations of apolipoprotein A-I lead to differentiated functional effects on lipid-binding and on glucose metabolism. Biochimica et Biophysica Acta (BBA) Mol. Basis Dis. 1864(9, Part B), 2822–2834 (2018)

    Article  Google Scholar 

  8. Eng, C.H.L., et al.: Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568(7751), 235 (2019)

    Article  Google Scholar 

  9. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Univ. Montreal 1341(3), 1 (2009)

    Google Scholar 

  10. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Ge, S., Wang, H., Alavi, A., Xing, E., Bar-Joseph, Z.: Supporting information for: Supervised adversarial alignment of scRNA-seq data. bioRxiv (2020). https://doi.org/10.1101/2020.01.06.896621v1.full.pdf

  12. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  13. Haghverdi, L., Lun, A.T., Morgan, M.D., Marioni, J.C.: Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36(5), 421 (2018)

    Article  Google Scholar 

  14. Hara, T., Tan, Y., Huang, L.: In vivo gene delivery to the liver using reconstituted chylomicron remnants as a novel nonviral vector. Proc. Natl. Acad. Sci. 94(26), 14547–14552 (1997)

    Article  Google Scholar 

  15. Hooker, S., Erhan, D., Kindermans, P.J., Kim, B.: Evaluating feature importance estimates. arXiv preprint arXiv:1806.10758 (2018)

  16. Hwang, B., Lee, J.H., Bang, D.: Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50(8), 1–14 (2018)

    Article  Google Scholar 

  17. Jaitin, D.A., et al.: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343(6172), 776–779 (2014)

    Article  Google Scholar 

  18. Kiselev, V.Y., Yiu, A., Hemberg, M.: scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15(5), 359 (2018)

    Article  Google Scholar 

  19. Ko, H.L., Wang, Y.S., Fong, W.L., Chi, M.S., Chi, K.H., Kao, S.J.: Apolipoprotein C1 (APOC 1) as a novel diagnostic and prognostic biomarker for lung cancer: a marker phase I trial. Thorac. Cancer 5(6), 500–508 (2014)

    Article  Google Scholar 

  20. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

    Google Scholar 

  21. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: CVPR (2018)

    Google Scholar 

  22. Lieberman, Y., Rokach, L., Shay, T.: Castle-classification of single cells by transfer learning: harnessing the power of publicly available single cell RNA sequencing experiments to annotate new experiments. PLoS One 13(10), e0205499 (2018)

    Article  Google Scholar 

  23. Lin, C., Jain, S., Kim, H., Bar-Joseph, Z.: Using neural networks for reducing the dimensions of single-cell RNA-seq data. Nucleic Acids Res. 45(17), e156 (2017)

    Article  Google Scholar 

  24. Lopez, R., Regier, J., Cole, M.B., Jordan, M.I., Yosef, N.: Deep generative modeling for single-cell transcriptomics. Nat. Methods 15(12), 1053 (2018)

    Article  Google Scholar 

  25. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: ICCV, vol. 2, p. 3 (2017)

    Google Scholar 

  26. Murakami, T., et al.: Triglycerides are major determinants of cholesterol esterification/transfer and HDL remodeling in human plasma. Arterioscler. Thromb. Vasc. Biol. 15(11), 1819–1828 (1995)

    Article  Google Scholar 

  27. Papalexi, E., Satija, R.: Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18(1), 35 (2018)

    Article  Google Scholar 

  28. Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. 32(3), 53–69 (2015)

    Article  Google Scholar 

  29. Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In: AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  30. Redgrave, T.: Chylomicron metabolism. Biochem. Soc. Trans. 32(1), 79–82 (2004). https://doi.org/10.1042/bst0320079

    Article  Google Scholar 

  31. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the predictions of any classifier. In: SIGKDD, pp. 1135–1144. ACM (2016)

    Google Scholar 

  32. Seidman, M.A., Mitchell, R.N., Stone, J.R.: Pathophysiology of atherosclerosis (Chap. 12). In: Willis, M.S., Homeister, J.W., Stone, J.R. (eds.) Cellular and Molecular Pathobiology of Cardiovascular Disease, pp. 221–237. Academic Press, San Diego (2014)

    Chapter  Google Scholar 

  33. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  34. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  35. Steiner, B., et al.: Pytorch: An imperative style, high-performance deep learning library. In: NeurIPS, vol. 32 (2019)

    Google Scholar 

  36. Stuart, T., et al.: Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019)

    Article  Google Scholar 

  37. Stuart, T., Satija, R.: Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019)

    Article  Google Scholar 

  38. Tung, P.Y., et al.: Batch effects and the effective design of single-cell gene expression studies. Sci. Rep. 7, 39921 (2017)

    Article  Google Scholar 

  39. Villani, A.C., et al.: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356(6335), eaah4573 (2017)

    Article  Google Scholar 

  40. Wang, G., Moffitt, J.R., Zhuang, X.: Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci. Rep. 8(1), 4847 (2018)

    Article  Google Scholar 

  41. Wang, H., Ge, S., Xing, E.P., Lipton, Z.C.: Learning robust global representations by penalizing local predictive power. arXiv preprint arXiv:1905.13549 (2019)

  42. Wang, H., He, Z., Lipton, Z.C., Xing, E.P.: Learning robust representations by projecting superficial statistics out. arXiv preprint arXiv:1903.06256 (2019)

  43. Yu, Y., et al.: Single-cell RNA-seq identifies a PD-1 hi ILC progenitor and defines its development pathway. Nature 539(7627), 102 (2016)

    Article  Google Scholar 

  44. Zeisel, A., et al.: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347(6226), 1138–1142 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Institute of Health grants 1R01GM122096 and OT2OD026682 to Z.B.J. and by a Scholars Award in Studying Complex Systems from the James S. McDonnell Foundation to Z.B.J. HW was supported by the National Institutes of Health grants R01-GM093156 and P30-DA035778.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songwei Ge or Ziv Bar-Joseph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ge, S., Wang, H., Alavi, A., Xing, E., Bar-Joseph, Z. (2020). Supervised Adversarial Alignment of Single-Cell RNA-seq Data. In: Schwartz, R. (eds) Research in Computational Molecular Biology. RECOMB 2020. Lecture Notes in Computer Science(), vol 12074. Springer, Cham. https://doi.org/10.1007/978-3-030-45257-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45257-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45256-8

  • Online ISBN: 978-3-030-45257-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics